Let \(f(x) = \frac{1}{\sqrt{2x-1}} \), for \(x > \frac{1}{2} \).

(a) Find \(\int (f(x))^2 \, dx \).

(b) Part of the graph of \(f \) is shown in the following diagram.

The shaded region \(R \) is enclosed by the graph of \(f \), the \(x \)-axis, and the lines \(x = 1 \) and \(x = 9 \). Find the volume of the solid formed when \(R \) is revolved 360° about the \(x \)-axis.
1.

(a) Find \(\int \frac{e^x}{1 + e^x} \, dx \).

(b) Find \(\int \sin 3x \cos 3x \, dx \).

2.

The following diagram shows a pole BT 1.6 m tall on the roof of a vertical building. The angle of depression from T to a point A on the horizontal ground is 35°. The angle of elevation of the top of the building from A is 30°.

Find the height of the building.
1.

A circle centre O and radius r is shown below. The chord $[AB]$ divides the area of the circle into two parts. Angle AOB is θ.

(a) Find an expression for the area of the shaded region.

(b) The chord $[AB]$ divides the area of the circle in the ratio $1:7$. Find the value of θ.

2.

Let $f(x) = ax^2 - 4x - c$. A horizontal line, L, intersects the graph of f at $x = -1$ and $x = 3$.

(a) (i) The equation of the axis of symmetry is $x = p$. Find p.

(ii) Hence, show that $a = 2$.

(b) The equation of L is $y = 5$. Find the value of c.
1. A toy car travels with velocity $v \text{ ms}^{-1}$ for six seconds. This is shown in the graph below.

![Graph of velocity v vs time t](image)

a) Write down the car's velocity at $t = 3$.
B) Find the car's acceleration at $t = 1.5$

c) Find the total distance travelled.

2. The expression $6 \sin x \cos x$ can be expressed in the form $a \sin bx$.

a) Find the value of a and of b.

b) Hence or otherwise, solve the equation $6 \sin x \cos x = \frac{3}{2}$, for $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}$

3. Given that $f(x) = \frac{1}{x}$, answer the following

a) Find the first four derivatives of $f(x)$.

b) Write an expression for $f^n(x)$ in terms of x and n.
Math SL
Math review day 5
Name: _____________________

The first 3 terms in a geometric sequence are: k^2, $-k$, $k - 2$.

a) Find the value of k.

b) Find the sum of the terms to infinity.

Find the x^3 term in the expansion of $(x - \frac{2}{x})^5$.

2. [Maximum mark: 6]

The following Venn diagram shows the events A and B, where $P(A) = 0.4$, $P(A \cup B) = 0.8$ and $P(A \cap B) = 0.1$. The values p and q are probabilities.

(a) (i) Write down the value of q.

(ii) Find the value of p.

(b) Find $P(B)$.
The graph of the function \(f(x) = a \sin (bx) + c \) is shown below for \(-360^\circ \leq x \leq 1080^\circ\).

(a) Write down the period of \(f(x) \).

(b) Write down the value of

(i) \(a \);
(ii) \(b \);
(iii) \(c \).

\(P \) is one of the points where the graph \(y = f(x) \) intersects the \(x \)-axis. The \(x \)-coordinate of \(P \) lies between \(-180^\circ \) and \(180^\circ \).

(c) (i) Mark and label the point \(P \) on the graph above.
(ii) \textbf{Estimate} the \(x \)-coordinate of \(P \).
8. [Maximum mark: 16]

Let \(\mathbf{OA} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} \) and \(\mathbf{OB} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} \).

(a) (i) Find \(\mathbf{AB} \).

(ii) Find \(|\mathbf{AB}| \). \[4\]

The point C is such that \(\mathbf{AC} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \).

(b) Show that the coordinates of C are \((-2, 1, 3)\). \[1\]

The following diagram shows triangle ABC. Let D be a point on [BC], with acute angle \(\angle ADC = \theta \).

![Diagram of triangle ABC with point D on line segment BC]

(c) Write down an expression in terms of \(\theta \) for

(i) angle ADB;

(ii) area of triangle ABD. \[2\]

(d) Given that \(\frac{\text{area } \triangle ABD}{\text{area } \triangle ACD} = 3 \), show that \(\frac{BD}{BC} = \frac{3}{4} \). \[5\]

(e) Hence or otherwise, find the coordinates of point D. \[4\]
10. [Maximum mark: 16]

Let \(f(x) = \cos x \).

(a) (i) Find the first four derivatives of \(f(x) \).

(ii) Find \(f^{(19)}(x) \). \[4\]

Let \(g(x) = x^k \), where \(k \in \mathbb{Z}^+ \).

(b) (i) Find the first three derivatives of \(g(x) \).

(ii) Given that \(g^{(19)}(x) = \frac{k!}{(k-p)!}(x^{k-19}) \), find \(p \). \[5\]

Let \(k = 21 \) and \(h(x) = \left(f^{(19)}(x) \times g^{(19)}(x) \right) \).

(c) (i) Find \(h'(x) \).

(ii) Hence, show that \(h'(\pi) = \frac{-21!}{2} \pi^2 \). \[7\]
Point A has coordinates \((-4, -12, 1)\) and point B has coordinates \((2, -4, -4)\).

(a) Show that \(\vec{AB} = \begin{pmatrix} 6 \\ 8 \\ -5 \end{pmatrix} \).

(b) The line \(L\) passes through A and B.

(i) Find a vector equation for \(L\).

(ii) Point \(C(k, 12, -k)\) is on \(L\). Show that \(k = 14\).

(c) (i) Find \(\vec{OB} \cdot \vec{AB}\)

(ii) Write down the value of angle \(OBA\).

Point D is also on \(L\) and has coordinates \((8, 4, -9)\).

(d) Find the area of triangle \(OCD\).

7. [Maximum mark: 7]

Consider \(f(x), g(x)\) and \(h(x)\), for \(x \in \mathbb{R}\) where \(h(x) = (f \circ g)(x)\).

Given that \(g(3) = 7, g'(3) = 4\) and \(f''(7) = -5\), find the gradient of the normal to the curve of \(h\) at \(x = 3\).
1. [Maximum mark: 7]

In the following diagram, $u = \overrightarrow{AB}$ and $v = \overrightarrow{BD}$.

[Diagram showing triangle ABC with points A, B, C, D, E, and vectors u and v defined as follows: u from A to B, v from B to D, E is the midpoint of AD, BD/DC = 1/3.]

The midpoint of \overrightarrow{AD} is E and $\frac{BD}{DC} = \frac{1}{3}$.

Express each of the following vectors in terms of u and v.

(a) \overrightarrow{AE}

(b) \overrightarrow{EC}

2.

Let $f(x) = \frac{\ln(4x)}{x}$, for $0 < x \leq 5$.

Points $P(0.25, 0)$ and Q are on the curve of f. The tangent to the curve of f at P is perpendicular to the tangent at Q. Find the coordinates of Q.