AFDA Unit 1 Review – Absolute Value Functions

UNIT 1 – ABSOLUTE VALUE EQUATIONS

- To solve an absolute value equation:
 1. **ISOLATE** the absolute value.
 2. Write **TWO** equations. One will equal a **NEGATIVE** number.
 3. **SOLVE** both equations.

- Examples of solutions:
 1. Verbal: **WRITE** in words. (Example: \(x \) equals 2 or \(x \) equals \(-4\))
 2. Symbolic: Using **NUMBERS** and **SYMBOLS**. (Example: \(x = 2 \) or \(x = -4 \)) or \(x = \{2, -4\} \)
 3. Graphically: Graph solutions on a **NUMBER LINE**. (Example:

\[\begin{array}{c}
-4 \\
2
\end{array} \]

- Graphing Absolute Value Equations:
 1. The \((h, k)\) form is \(y = a|x - h| + k \)
 a) \((h, k)\) is the **VERTEX**. (ALWAYS CHANGE \(h \) and KEEP \(k \).)
 b) \(a \) determines if the graph **OPENS UP/DOWN** (SLOPE TO THE **RIGHT**)
 c) The shape of the graph is a **V** or **Λ**

Solve for \(x \) and then write the solution verbally, graphically, and symbolically.
1. \(|3 - x| = 10\)
2. \(2|4x - 5| + 3 = 21\)

Verbally: ___________________________
Graphically: ________________________
Symbolically: ______________________

Verbally: ___________________________
Graphically: ________________________
Symbolically: ______________________
3. \(-2|5x + 7| \leq -12\)

Verbally:
Graphically:
Symbolically:

4. \(2|x - 7| + 8 = 6\)

Verbally:
Graphically:
Symbolically:

Graph the following absolute value equations.

5. Graph \(y = |x - 2| + 3\)

6. Graph \(y = \frac{2}{3}|x + 3| - 1\)

7. Graph \(y = -2|x - 1|\)

8. Graph \(y = -\frac{1}{2}|x| + 4\)