4th Grade

Phase III
April 27 to May 15, 2020

Name:
School:
Grade Level: Teacher:

NPS Curriculum & Instruction
This page intentionally left blank.
Social Studies Learning in Place Plans
4th Grade: April 27 – May 1

<table>
<thead>
<tr>
<th>Learning Experience 1</th>
<th>Learning Experience 2</th>
<th>Learning Experience 3</th>
</tr>
</thead>
</table>
| **As the agricultural economy grew in the South, so did the population of enslaved Africans. How did the population of enslaved Africans change over time in the Southern states? Read the “Slave Population Patterns” map and answer the questions under the map.** | **The issue of slavery led to tensions between the North and the South. Read textbook page 114. Answer the following questions on a separate sheet of paper.**
1. Northerners and Southerners had a difference of opinion about slavery. Why do you think this difference of opinion became a problem as the United States expanded west?
2. Write a cause and effect statement that shows you understand the section called A New Leader.
3. Read the section called “Black Slavery, Black Freedom.” Describe in 3-4 sentences what life was like for free persons of color in the 1850s.** | **The creation of the Republican political party and looming election of Abraham Lincoln only furthered Southern planters’ fears that slavery would end in the South. Read textbook page 115. Then, complete the “North vs. South Quick Check” activity.** |

Social Studies Learning in Place Plans
4th Grade: May 4-8

<table>
<thead>
<tr>
<th>Learning Experience 1</th>
<th>Learning Experience 2</th>
<th>Learning Experience 3</th>
</tr>
</thead>
</table>
| **Fort Sumter and the First Battle of Bull Run were two of the most important battles in Virginia during the Civil War.**
Read the passage, Attack on Fort Sumter Marked the Start of the War and First Battle of Bull Run and begin a Civil War timeline for the first two battles. Each battle on your timeline should include:**
- Date the battle took place
- A symbol or picture for the battle
- One complete sentence of why the battle was important | **The Battle of Gettysburg was a major turning point for the Union during the Civil War. Read the passage The Battle of Gettysburg and textbook page 125 and add to your timeline.**
The two events you should have added are The Battle of Gettysburg and Appomattox Court House, Virginia. Each battle on your timeline should include:
- Date the battle took place
- A symbol or picture for the battle
- One complete sentence of why the battle or event was important | **There were four major battles and events of the Civil War era including Fort Sumter, First Battle of Bull Run, Battle of Gettysburg, and Appomattox Courthouse.**
Complete the matching activity in your packet. Match each event with its description and significance. |
Leaders of the North and South had very different ideas about the importance of preserving the war and if the state or federal government should have greater power. Each leader in the war had unique ideas and perspectives which contributed to their role and impact.

Read the “Leadership Roles During the Civil War” article. On a separate sheet of paper, create sketchnotes (draw and label the important details) for each paragraph. Be sure to include labels and captions for your sketchnotes!

<table>
<thead>
<tr>
<th>Learning Experience 1</th>
<th>Learning Experience 2</th>
<th>Learning Experience 3</th>
</tr>
</thead>
</table>
| Leaders of the North and South had very different ideas about the importance of preserving the war and if the state or federal government should have greater power. Each leader in the war had unique ideas and perspectives which contributed to their role and impact. | Choose one of the following to complete using the Leadership Roles During the Civil War article and your sketchnotes.

CHOOSE ONE:

Option 1 - Think of two questions you would like to ask each leader if you could. Your questions should be relating to the roles and contributions of each leader. You should end up with 2 questions per leader (total of 10 questions).

Option 2 - Compare two of the leaders using a Venn Diagram. You must have 3 similarities and 3 differences for both leaders you choose. | Using what we have learned about each of the Civil War leaders, complete the sort by matching each role and contribution with the appropriate Civil War leader.

Color (or number) each role and contribution the same color as the appropriate Civil War leader.

Red - Robert E. Lee (or 1)
Blue - Ulysses S. Grant (or 2)
Green - Abraham Lincoln (or 3)
Orange - Thomas “Stonewall” Jackson (or 4)
Purple - Jefferson Davis (or 5) |
1. What does this map depict?

2. Compare the 1790 box with the 1860 map. How did the population of enslaved peoples change over time?

3. What can you infer led to this change in the population of enslaved peoples?

4. What does this map lead you to conclude about the South’s reliance on slave labor?

Virginians were divided about secession from the Union, which led to the creation of West Virginia.

VIRGINIA LEAVES THE UNION

In 1820 the United States was equally divided between states with slavery and states without. Northerners wanted new states to be free. White Southerners wanted slavery to expand. Neither side could entirely get its way but they were able to agree to the **Missouri Compromise**, which drew an imaginary “line” through the new Louisiana Territory, to decide which new states would permit slavery and which would be free.

In the years that followed, pro-slavery and anti-slavery forces continued to argue as “the West” kept moving farther west. In 1854 Congress passed the **Kansas-Nebraska Act**, repealing the Missouri Compromise. In 1857 the U.S. Supreme Court ruled that Congress could not stop slavery from expanding.

The court’s ruling centered on Dred Scott, a Virginia-born slave, whose owner had taken him into free territory for extended periods. Scott asked for his freedom, but the Court ruled that he was still a slave, no matter where he lived.

A New Leader

Angered by the Kansas-Nebraska Act, and then the Dred Scott decision, a brand-new political party took shape. The Republican Party vowed to keep slavery from expanding into new western territories. The party’s presidential candidate in 1860 was a very tall, very thin, Midwesterner. His name was Abraham Lincoln.
A Nation Divided

Some Southerners feared that Lincoln would end slavery in the South. In December 1860, South Carolina decided to secede, and soon six other Deep South states seceded from the Union. In February 1861 these states formed a new country, the Confederate States of America (C.S.A.), with a capital in Montgomery, Alabama. Jefferson Davis, a Mississippi planter and politician, became its president. The U.S. president, Lincoln, took office in March 1861. What would he do? Should he let those seven states go their separate way? His answer was a loud, firm, “NO!”

Virginia Secedes

Just before dawn on April 12, 1861, Confederate soldiers attacked Fort Sumter. President Lincoln called on all the states that had not seceded to send volunteer troops to put down the rebellion.

Virginians faced a tough decision. At a special convention, delegates had first voted two-to-one not to secede. Then the news came from Fort Sumter. President Lincoln’s call for the use of force to stop secession led to another vote. This time the vote was two-to-one to join the Confederacy. On April 17 Virginia seceded, soon joined by North Carolina, Tennessee, and Arkansas, making 11 Confederate states in all. Four slave states—Delaware, Maryland, Kentucky, and Missouri—stayed in the Union.

A Wartime Powerhouse

Virginia was the biggest and wealthiest of the Confederate states. It had factories where guns and other war materials could be made. It was the home of some of the best military minds in America. Virginia was so important to the war effort that the Confederate capital was moved to Richmond, which quickly became the C.S.A.’s brains and heart.

Virginia Breaks Apart

Some Virginia voters did not want to leave the Union. White farmers in the western part of the state relied far less on slavery than those to the east. By 1861 the two regions had been quarreling with each other for more than 30 years over several issues, including voting rights for all white men, taxes, and the difficult issue of slavery. People in the “mountain counties” were fed up.

Finally, the western counties decided to break away from their home state, Virginia. In 1863 Congress recognized a new state, West Virginia, which became a Union state. Virginia was now cut in two, just like America.

As Virginia’s families went to war, some found themselves taking up weapons against cousins, brothers, and even sons. Once they had been neighbors and fellow citizens of a single state in one united nation. Now they were bitter enemies.
North vs South Quick Check

Directions: Read each statement and write N if it describes the North and S if it describes the South

_____ Industrialized
_____ Farms
_____ West Virginia
_____ Slaves
_____ Agricultural
_____ Remained in the Union
_____ Virginia
_____ Supported slavery
_____ Confederacy
_____ Opposed slavery

_____ Wanted new territories to enter the U.S. as “free states”
_____ Seceded from the Union
_____ Cash crops
_____ Union
_____ Wanted new territories to enter the U.S. as “slave states”
_____ Factories
_____ Relied on slave labor
Attack on Fort Sumter Marked the Start of the War

The American Civil War (1861-1865) was a war fought between Northern and Southern states. When Abraham Lincoln became president in 1860, Southern states feared that slavery would be banned. This caused eleven Southern states to form the Confederate States of America. The Northern states formed the Union.

Boom! A single cannon shell burst in a flash of light high above Fort Sumter. This was the signal for the Confederate attack on the U.S. fort to begin. It was also the moment our Civil War began — 4:30 a.m. on April 12, 1861 — 150 years ago this week.

Who was defending Fort Sumter? Just 82 soldiers — including members of the military band — helped by about 40 workmen employed at the fort. The soldiers knew it was their duty to defend U.S. property that President Abraham Lincoln had vowed to protect. But they were greatly outnumbered. Finally, with fires raging inside, Fort Sumter’s Union commander surrendered. A great shout went up from the Confederates when they saw a white flag of truce replace the battle-torn American flag that had flown over the fort. For months, that flag had angered the Confederates. They didn’t want a U.S. Union fort in Southern territory, but Lincoln, who had taken office the month before, had made it clear he wouldn’t give it up. When he told South Carolina’s governor that he was sending an unarmed supply ship to the men inside Sumter, it was the last straw. Confederate leaders decided to bombard the fort unless the U.S. soldiers left right away. But their orders were to defend the fort, so they did.

The attack on Fort Sumter was the first battle of the American Civil War. Force had finally brought an end to the standoff between North and South.

Virginia seceded or left from the United States and joined the Confederacy rather than send volunteers to fight against “her sister states.” Three other Southern slave states quickly moved toward secession. Soon, the Confederacy would include 11 states, and the Union would include 23.

All this happened during the first week after Fort Sumter. In coming weeks, young men rushed to sign up to fight. Both North and South were sure they would win — and win in a matter of months. But they were wrong. The bombardment of Fort Sumter began four long, hard years of war. (Adapted from Common Lit and Five Pond Press)

First Battle of Bull Run

Three months later, on July 21, 1861, the first official battle of the Civil War was fought. It was a typical summer day at the McLean house in Manassas, Virginia, except for one thing—the booming blasts of guns that surrounded the house. A new chapter in the War Between the States had begun.

It was the first major land battle of the Civil War, known as the Battle of Bull Run (sometimes called the Battle of First Manassas). Sweating in their heavy woolen uniforms, about 35,000 Union soldiers began marching west, away from Washington, D.C., toward some 22,000 Confederate troops. The fight began near Manassas Junction, where two railroads met near a creek named Bull Run. At one point, it seemed that the Union would win, but when thousands of new Confederate troops arrived, the Union victory turned into a terrible defeat and Northern soldiers retreated in disorder. Union casualties—dead, wounded, or missing—topped 2,700. Confederate losses were just under 2,000. Those numbers seemed enormous, but they only hinted at the staggering loss of life that was to come.

(Adapted from Common Lit and Five Pond Press)
The Battle of Gettysburg

In the summer of 1863, Southern and Northern troops clashed in one of the bloodiest battles of the Civil War. After the Confederate, or Southern, Army won a battle in northern Virginia, it invaded the North and headed into Pennsylvania. It hoped to collect more supplies and weaken the North. Meanwhile, the Union Army of the North was pursuing the Confederate troops. The two sides met and fought near the town of Gettysburg, Pennsylvania. The battle at Gettysburg has been called "the most crucial battle in American history."

Before the Battle of Gettysburg, the Confederacy had been doing very well in the Civil War. But at Gettysburg, the North defeated the South. The battle was bloody. The Union Army suffered 23,000 casualties, while the Confederate Army suffered 28,000. A casualty is someone who is killed, wounded, or captured in battle. The Battle of Gettysburg turned the tide of the war and marked the beginning of the success of the North in defeating the South.

In the fall of 1863, President Lincoln visited the battlefield at Gettysburg for a ceremony dedicating the field to all the soldiers who had died. He reminded people why Americans must stand up for their values. His speech, the Gettysburg Address, has become one of the most famous speeches of American history.
A Terrible Price
With much of Richmond destroyed and much of the South in ruins, General Lee knew the end had come. On April 9, 1865, Lee’s aide carried a white flag through the lines to tell General Grant that Lee was ready to surrender. The guns fell silent.

What a terrible price had been paid! During the four years of war, more than 600,000 men had died, in blue uniforms and gray, of diseases in the camps, or wounds on the battlefield.

This awful war with its many names—the War Between the States, the War to Free the Slaves, the Lost Cause, the War Against Northern Aggression, the War of the Rebellion, and the Brothers’ War—led to the end of slavery and the fall of many wealthy Southern plantation owners.

An Unknown Future
The South would remain poor for many years to come, but the war’s end was also the beginning of a new way of life for Americans—and for America.

Lee had surrendered his army knowing the Confederacy could not win. But even at the end of April 1865, many questions still had no answers. How would political reunion work? Could the former Confederate states simply send their congressmen back to the U.S. capital instead of to Richmond? Slavery was abolished across the South, but what would happen to all the newly freed slaves? Would they be citizens? Would African American men be allowed to vote? What would happen next?

A Town Called Appomattox Court House
On April 9, 1865 at 1:30 in the afternoon, Confederate General Robert E. Lee and Union General Ulysses S. Grant sat down at the McLean House in Appomattox Court House, a small town near Lynchburg, Virginia. Lee wore a clean dress uniform. Grant still wore his muddy field clothes.

As Lee read Grant’s terms of surrender, he was surprised. His Army of Northern Virginia would not be paraded through the streets of Washington like criminals. His officers would not be sent to jail for treason. His soldiers could keep their horses and were all free to go home in peace. America’s long nightmare was coming to an end. The Civil War was over.

Signing the documents of surrender, Lee, in gray, sits across the room from Grant, in blue. Describe how each man was probably feeling at this moment.
Civil War Battles Matching Activity

Match each event with its description/significance.

1. _______This event started the American Civil War.

2. _______Speech by President Abraham Lincoln to dedicate a cemetery to fallen Union soldiers. It is still a famous speech today.

3. _______ First major battle of the Civil War.

4. _______ The outcome of this battle divided the south and the North gained control of the Mississippi River.

5. _______Turning point in the war, the North was able to keep Lee’s army from advancing.

6. _______Issued by President Abraham Lincoln, it detailed the end of slavery in the U.S.

7. _______ Location where General Lee surrendered to General Grant and the war ended

A. Battle of Gettysburg
B. First Battle of Bull Run (Manassas)
C. Battle of Vicksburg
D. Appomattox Courthouse
E. Firing on Fort Sumter, SC
F. Emancipation Proclamation
G. Gettysburg Address
Leadership Roles During the Civil War

The election of President Abraham Lincoln in 1860 marked a major turning point in the tensions between the North and the South. Lincoln represented a prominent threat to southern states’ rights to use the forced labor of enslaved Africans. He was against the spread of slavery into newly formed states, but ultimately, he was determined to preserve the Union, by force if necessary.

After the secession of many southern states, the newly formed Confederate States of America (CSA) chose Jefferson Davis (pictured right) as their president. Davis was a graduate of the famed West Point military school and began his career as a frontier soldier. He served as a United States Congressman for several terms and served as Secretary of War under President Franklin Pierce in 1853. When his home state of Mississippi joined others in seceding from the Union, Davis resigned as Senator and was elected President of the Confederate States of America less than a month later. At the end of the war, Davis was captured as he fled the Confederate White House in Richmond, Virginia. He was sentenced to two years in prison.

Military leadership was often spread amongst many different generals and commanders on both sides. One of the most notable generals was the commander of the Union Army, Ulysses S. Grant. General Grant led his Army of the Potomac to the final showdown where he defeated General Robert E. Lee. Grant was known for being tough and refusing to retreat. In April of 1865, the Confederate Capital in Richmond, Va. fell to Grant’s army and soon after, General Grant accepted General Lee’s surrender at the Court House in Appomattox, Va.
Although he was initially offered command of the Union Army, Robert E. Lee chose to remain loyal to Virginia, who had seceded from the Union, stating “I have not been able to make up my mind to raise my hand against my birthplace, my home, my children.” General Lee would prove to be an effective leader for the Confederacy as commander of the Army of Northern Virginia, with impressive victories in battles such as the Second Battle of Bull Run and the Battle of Fredericksburg. However, as the supplies and manpower of the Confederacy slowly eroded, defeat became inevitable. After several major losses, General Robert E. Lee surrendered at the court house in Appomattox, Va.

One of the most notable figures of the Confederate Army was General Thomas J. Jackson. Jackson was known for being steadfast and heroic. He even was described as “standing like a stone wall” in the thick of the First Battle of Bull Run, earning him the nickname “Stonewall Jackson.” Despite his heroism, General Thomas “Stonewall” Jackson died after being hit by “friendly fire” from his own soldiers at the Battle of Chancellorsville in 1863.

Adapted from Five Ponds Press and Ducksters
<table>
<thead>
<tr>
<th>Coloring (Numbering) Key</th>
<th>Against spread of slavery</th>
<th>Accepted surrender of General Robert E. Lee at Appomattox Court House, Virginia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red- Robert E. Lee (or 1)</td>
<td>General of the Union Army that defeated Robert E. Lee</td>
<td>Known for being tough and not giving up</td>
</tr>
<tr>
<td>Blue- Ulysses S. Grant (or 2)</td>
<td>Confederate leader</td>
<td>He was offered command of the Union forces at the beginning of the war but chose not to fight against Virginia</td>
</tr>
<tr>
<td>Green- Abraham Lincoln (or 3)</td>
<td>President of the Confederate States of America.</td>
<td>Determined to preserve the Union, by force if necessary</td>
</tr>
<tr>
<td>Orange- Thomas “Stonewall” Jackson (or 4)</td>
<td>Captured as he fled the Confederate White House in Richmond, Virginia</td>
<td>Ensured Confederate victory at First Battle of Bull Run by showing courage and refusing to retreat</td>
</tr>
<tr>
<td>Purple- Jefferson Davis (or 5)</td>
<td>Leader of Army of Northern Virginia</td>
<td>Surrendered to General Ulysses S. Grant at Appomattox Court House, Virginia</td>
</tr>
</tbody>
</table>
Week 7

Monday
- Read the flier *Toy World*
- Use the text to answer each question. Write the answer on a separate piece of paper. Be sure to write your answers in complete sentences.
- 1. How long does *Bugs Away!* repellent keep insects away?
- 2. At what distance should you hold it before spraying?
- 3. Which word in the “Warning” section of the label means *discomfort*?
- Write your own label for using sunscreen. Include a *Directions* heading and a *Warnings* heading.

Tuesday
- Read the label *Bugs Away!*
- Use the text to answer each question. Write the answer on a separate piece of paper. Be sure to write your answers in complete sentences.
- 1. How long does *Bugs Away!* repellent keep insects away?
- 2. At what distance should you hold it before spraying?
- 3. Which word in the “Warning” section of the label means *discomfort*?
- Write your own label for using sunscreen. Include a *Directions* heading and a *Warnings* heading.

Wednesday
- Read the nutritional facts for *Whole Milk vs. Skim Milk*
- Create a Venn diagram comparing the two labels.
- Write about which milk is healthier for you and why. Use nutritional facts to support your opinion.

Thursday
- Read the recipe *Pizza English Muffins*
- Create 3 questions that could be answered from reading this recipe.
- Write a recipe for a peanut butter and jelly sandwich. Include an *Ingredients* heading and a *Directions* heading.

Friday
- Read the *Glenview Elementary Soccer Schedule*
- Use the text to answer each question. Write the answer on a separate piece of paper. Be sure to write your answers in complete sentences.
- 1. How many different opponents are there in all?
- 2. What is the earliest time and the latest time that games can begin?
- 3. How many away games will the Wolves play?
- Create a schedule for a sport or activity that you like to do.

Read 14.2

Read a book of choice and record it on the reading log each day.

Week 8

Monday
- Read *Jump! Jump! Jump!*
- Visualize It! While reading, draw a picture of at least 3 important events. What is the theme? Write a sentence to explain.
- Write a paragraph about the *conflict* (or problem) and the *resolution* (or solution) in this realistic fiction story. Include details from the story that support your answer. Be sure to
- Read the poem *Grown Up*
- Read it once for enjoyment. Then, reread it and do text annotations for each stanza. Answer the 2 comprehension questions below the poem.
- Write a poem about growing up. Include what you could do at age four, five, six, seven, and eight.

Tuesday
- Read *The Magic Glasses*
- Think about the author’s clues while reading. Find the sentences to conclude that Violet hated her old glasses.
- Write 3 more conclusions that you can pull from the author’s clues. Use this organizer.

Wednesday
- Reread *The Magic Glasses*
- Answer the 3 comprehension questions below the story.
- Write a summary for *The Magic Glasses*. Include the beginning (B), middle (M), and end (E) of the story. Use this graphic organizer.

Thursday

Friday
- Read *The Disappearing Room*
- Create 5 questions that could be answered from reading this text.
- June and Alejandro have a problem. The room they are in is too dark for them to see well. Rewrite the ending so it has a different outcome.
Week 9

Monday
Read *The Park*
Visualize It! While reading, draw a picture of at least 3 important events.
Summarize the passage using the Somebody-Wanted-But-So-Then format.

Tuesday
Read *Amusement Park Motion*
Annotate the text while you read to make your thinking visible. See the Making Thinking Visible guide for help.
Write 4 details from the passage and choose the main idea: At an amusement park, there is noise everywhere OR Amusement parks are full of motion.

Wednesday
Reread *The Park* and *Amusement Park Motion*
Use a Venn diagram to compare the setting in both passages.
Write a paragraph describing how the settings are similar and how they are different.

Thursday
Research a Person
Today we are starting research. You are going to research a person. You may choose a person in your home, a person you have a book about, or a person you can research on the internet.
If none of these resources are available, you can use one of the biographies from your last Learning in Place packet as a source. Remember that Wikipedia is not a credible source.

Friday
Research a Person

Step One:
We are going to start this process by creating a list of questions that you will ask the person. If it is a yes or no question, you will need to make sure to include explain or why. Use the attached graphic organizer

Determining the Importance: People to create questions and make sure that you are getting the important information. The questions should be able to be put in one of the categories.
Today you are to write at least 7 questions in the graphic organizer.

Step Two:
Now that you have questions, let’s find answers! If the person you are researching is a person in your home, conduct an interview and record the answers to your questions.
If the person you are researching is from a book, biography, or internet then use your source/s to find the answers to your questions. Record your answers to each question.

Step Three:
Use the information you collected to write draft. You should organize your paper into 3 paragraphs (introduction, body, and conclusion) and make sure you give credit if you used a resource.

Once you have completed your rough draft, read it to someone in your home to see if it makes sense.
You will revise and edit on Monday.

Read 14.2 Read a book of choice and record it on the reading log each day.
<table>
<thead>
<tr>
<th>Date</th>
<th>Number of Pages Read</th>
<th>Title</th>
<th>#summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12-20</td>
<td>10</td>
<td>Cinderella</td>
<td>#mistreatedgirlmeetsprincelosesshoeandliveshappilyeverafter</td>
</tr>
</tbody>
</table>
Bugs Away! is an all-natural herbal insect repellent. No dangerous chemicals! It keeps away mosquitoes, ticks, gnats, and chiggers for up to 2 hours.

Directions:

Applying to Body: Hold spray bottle about 8 inches from skin or clothing and spray with a sweeping motion. Use enough spray to cover the exposed skin or clothing. Do not over-apply.

Applying to Face: Spray the palm of your hand with the spray. Then rub gently on your face, avoiding eye areas. Spread evenly for maximum protection. Do not apply to the mouth, lips, or eyes.

Warnings:

For external use only! Causes eye irritation. If spray gets in eyes, flush eyes thoroughly with water. Do not let very young children use without supervision. Test on small area of skin before use the first time in case of skin reaction.
Whole Milk vs. Skim Milk - Read the nutrition facts below for both labels.

Step 1
Read the Nutrition Facts Labels to the right.

Whole Milk

<table>
<thead>
<tr>
<th>Amount Per Serving</th>
<th>Calories</th>
<th>Calories from Fat 70%</th>
<th>% Daily Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Total Fat**: 8g (12%)
- **Saturated Fat**: 5g (25%)
- **Cholesterol**: 35mg (12%)
- **Sodium**: 125mg (5%)
- **Total Carbohydrate**: 12g (4%)
- **Dietary Fiber**: 0g (0%)
- **Sugar**: 11g
- **Protein**: 8g

Vitamin A: 8%

Vitamin C: 4%

Calcium: 30%

Iron: 0%

Vitamin D: 25%

Skim Milk

<table>
<thead>
<tr>
<th>Amount Per Serving</th>
<th>Calories</th>
<th>Calories from Fat 0%</th>
<th>% Daily Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Total Fat**: 0g (0%)
- **Saturated Fat**: 0g (0%)
- **Cholesterol**: less than 5mg (1%)
- **Sodium**: 130mg (5%)
- **Total Carbohydrate**: 12g (4%)
- **Dietary Fiber**: 0g (0%)
- **Sugar**: 11g
- **Protein**: 8g

Vitamin A: 8%

Vitamin C: 4%

Calcium: 30%

Iron: 0%

Vitamin D: 25%
Pizza English Muffins – Read the recipe below.

Prep Time: 10 minutes

Ingredients:
- 1 English muffin
- tomato sauce
- shredded mozzarella cheese
- toppings such as chopped onion, broccoli, or mushroom (optional)
- seasonings such as oregano, garlic powder, or red pepper flakes (optional)

Directions:
1. Preheat a toaster oven or oven to 250 degrees (You’ll need adult assistance with this!)
2. Split open an English muffin, so you have two halves.
3. Spread tomato sauce on each half.
4. Sprinkle shredded cheese on top of the tomato sauce.
5. Sprinkle on your favorite toppings.
6. Put a pinch of seasonings on each half.
7. Put the English muffins on a baking sheet.
8. Bake for approximately 8-10 minutes until the cheese is bubbly.
9. Remove from oven (Ask an adult for assistance here too!) and let cool.

Serves 1

Enjoy!

Glenview Elementary Soccer Schedule – Read the schedule below.

<table>
<thead>
<tr>
<th>Teams</th>
<th>Opponent</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharks</td>
<td>Scorpions</td>
<td>Mon. May 5</td>
<td>4:00 PM</td>
<td>Away</td>
</tr>
<tr>
<td>Wolves</td>
<td>Lions</td>
<td>Wed. May 7</td>
<td>5:30 PM</td>
<td>Home</td>
</tr>
<tr>
<td>Sharks</td>
<td>Tigers</td>
<td>Mon. May 12</td>
<td>4:30 PM</td>
<td>Home</td>
</tr>
<tr>
<td>Wolves</td>
<td>Bears</td>
<td>Wed. May 14</td>
<td>5:00 PM</td>
<td>Home</td>
</tr>
<tr>
<td>Sharks</td>
<td>Dragons</td>
<td>Mon. May 19</td>
<td>4:30 PM</td>
<td>Away</td>
</tr>
<tr>
<td>Wolves</td>
<td>Scorpions</td>
<td>Wed. May 21</td>
<td>4:00 PM</td>
<td>Home</td>
</tr>
<tr>
<td>Sharks</td>
<td>Bears</td>
<td>Mon. June 1</td>
<td>5:30 PM</td>
<td>Home</td>
</tr>
<tr>
<td>Wolves</td>
<td>Tigers</td>
<td>Wed. June 2</td>
<td>5:00 PM</td>
<td>Away</td>
</tr>
<tr>
<td>Sharks</td>
<td>Lions</td>
<td>Mon. June 8</td>
<td>5:00 PM</td>
<td>Home</td>
</tr>
<tr>
<td>Wolves</td>
<td>Dragons</td>
<td>Wed. June 10</td>
<td>4:30 PM</td>
<td>Away</td>
</tr>
<tr>
<td>WOLVES</td>
<td>SHARKS</td>
<td>Mon. June 15</td>
<td>5:00 PM</td>
<td>HOME</td>
</tr>
</tbody>
</table>
Making Thinking Visible
Leave Tracks of Your Thinking
Text Annotation Basics

Read ★ Think ★ Stop ★ Jot

Underline or highlight the important/key ideas.

Circle or record words or phrases that are confusing or unknown to you.

Jot notes restating the author’s ideas.
(Summarize, Question, Sketch, Explain)

Jump! Jump! Jump!

“You’re doing it all wrong,” said Ryan.
“You’re nuts!” shouted Tom. “I’m the best jumper there ever was!”
“Then how come you can’t touch the doorframe?”
“It’s hard, okay?”

Tom stood on the concrete, rubbing his shoulder and looking straight up. The doorway to the lunchroom was ten feet high, at least. Nobody his age could jump high enough to touch it. Older kids tried every day. Nobody even came close. But Ryan had dared Tom that he couldn’t do it, and so Tom had to try.

He muttered under his breath: “I’m the best jumper there ever was.” It had started the year before at recess. A Frisbee was stuck in a tree. Nobody could jump high enough to get it. Nobody could climb the tree to get it. Nobody could throw anything that would knock it down. And so Tom had stood way back from the tree. He got a running start. And when he was going as fast as he could run, he leapt. It was like he was in the air forever, and then he felt the Frisbee in his hand. From that day on, when there was a problem that could be solved by jumping, they called Tom.

Everybody loved their jumping champion, except for Ryan. Before Tom had come along, Ryan had been the best jumper in the class. He could jump over hurdles. He could jump all sorts of places—but never quite as high as Tom. Ever since the day Tom had rescued the Frisbee, Ryan had been out for revenge. Now he was going to get it.

“Come on,” he taunted. “You can’t jump just a little bit higher? I thought you were the best jumper there ever was!”

Tom gritted his teeth. He tensed his legs. He threw his body up into the air. And he still fell short by at least two feet. He didn’t want to say it was impossible, but…

“It’s impossible,” he said.

“Ha! I knew it.”

“Unless we work together.”

“Excuse me?”

“Neither of us can jump high enough to touch it alone, but if we work together…” Tom explained his plan.

A few minutes later, Tom knelt on the ground. He laced his fingers together and held Ryan’s foot in his hands.

“One…two…three!” shouted Tom. On three, Ryan put all his weight on Tom’s hands, and Tom threw him up into the air. Ryan’s hand smashed into the doorframe, and he fell down laughing.

“We did it!” he said.

“Now it’s my turn!” said Tom. Together, they were the best jumpers there ever were.

Grown Up!

I used to be a superhero,
Soaring high from tree to tree.
With a cape around my shoulders,
I was as happy as could be.

“Grow up,” my brother said.

By four, I’d made a rocket ship.
It took me all the way to Mars.
It started out as a cardboard box,
Before I steered it to the stars.

“At four,” my sister said.

At five, I could read and write
in every language ever heard.
The pictures gave me all I needed.

And crayon scrawls stood in for words.

“Grow up,” my best friend said.

At six, I put my cape away.
At seven, a box was just a box.

By eight, I read and wrote with ease.
I could tell the time on clocks.

“You’re growing up,” my mother said.

I miss my cape. Sometimes I think that boxes still could make cool forts.

But I have no time for make believe
I’m busy writing school reports.

I don’t always like being grown up.

QUESTIONS:

1. The central idea of this poem is to show-
 A. that some kids never stop playing make-believe.
 B. the child’s skills at different ages
 C. how tough growing up can be
 D. who the child’s family and friends are

2. By the end, how do you think the child feels about growing up?
 A. a little sad
 B. bored
 C. worried about the future
 D. happy
The Magic Glasses

Violet had always worn glasses, for as long as she could remember. Being ten years old, it was possible she’d been wearing them for ten years. Maybe she was born with glasses! Violet couldn’t see things that were far away from her, but she also had trouble reading. Her eyesight was very poor.

Sometimes, while she was doing her homework in study hall, her glasses would slide down to the tip of her nose. Once, they even fell off her face and landed on the floor. “Violet, what’s going on?” her teacher, Mrs. Shellsworth, asked when she saw Violet crawling on the floor with her hands stretched out.

“I can’t find my glasses,” replied Violet, shyly. The rest of the students looked up from their books and started to laugh. When Violet found the brown specs behind her desk, she quickly put them back onto her face. But they wouldn’t stay on; they were broken.

Not wanting to draw any more attention to herself, Violet held her glasses onto her face with her index finger and pretended to read. That night, she told her mother what had happened.

“We’re going to have to get you new glasses,” she said, sternly. Violet’s mother was a doctor, and she worked long hours. When she came home, she was often too tired to do much of anything other than watch television with Violet. Her father didn’t live with her. He’d moved out of the house when Violet was just a little girl. She visited her father on weekends, though. He lived in a nearby town and always took her to baseball games in the summer.

But it wasn’t summer yet. Violet still had three months left of school, and that meant three more months of being made fun of because of her silly loose glasses. Violet hated her glasses. The day after her glasses had fallen to the floor, Violet’s mother took her to the eye doctor. They did all sorts of tests to see whether she needed a new prescription. After the tests, which showed that her eyes had gotten worse since the last time she’d been there, it was time to pick out new glasses frames.

Violet looked at the shiny glass case that was almost as tall as she was. There were boring brown frames and simple black frames. But there were also some pink and blue frames, and even some sparkly yellow frames.

“Mom, can I get those?” Violet said, pointing to the sparkly yellow frames. “No, you cannot. Those glasses are not appropriate for school,” said her mother tersely. “But…” said Violet. “No ‘buts.’ You will get these frames right here,” said her mother, pointing to some round gray glasses that Violet hadn’t even noticed. Violet was sad, but there was no use arguing with her mother. She was stuck with the gray frames. Still, Violet wasn’t about to put them on right away. She decided to pout, instead, all the way home. The next day was a Saturday. It was raining hard, and Violet wouldn’t have gone outside if her father weren’t coming to take her to the movies.

“You all ready, Bug?” her dad asked, when he came to pick her up. He always called her Bug.

“Where are your glasses?” he asked, when he saw her squinting up at him.

“I got new ones,” said Violet. Worried that her father wouldn’t like them, she’d put them in her backpack and was going to wear them in the dark theater where she knew no one could see them.

“Well, where are they?” he said. Violet, not wanting to cause a scene, reached into her bag and put the round gray frames onto her face. She didn’t like them and was hoping maybe she could convince her dad to buy her new ones. On the way to the movie theater, she noticed something very strange while peering through her new glasses frames. Way in the distance, a small bird was smiling at her. Flapping its wings and smiling. That can’t be right, she thought. Then she looked around and noticed that other birds were making faces as well. A pigeon in a tree almost a mile away looked as if it had smelled something strange; its beak was twisted to the side as if in disgust. Then, on the sidewalk near a park they were approaching, she could see a squirrel sneeze, rub its nose, then move its lips as if to say, “Excuse me!” Immediately, she pulled the glasses off of her face, in shock.

“What’s wrong?” asked her father. Violet didn’t want to say what she had seen. Were animals supposed to be so animated? Were these magical glasses? She didn’t know, but one thing was for sure: she’d never seen such
things before in her life, and she wanted to see more.
Slowly, she put the glasses back on. They were almost at the movie theater, so she made sure to look at as many trees as possible in search of more squirrels, more birds, and more little creatures. Pushing her face up against the car window to her right, she started to stare intently and noticed a man walking his dog. The man was walking slowly, playing with his cell phone while his white poodle was pulling hard on its leash. Violet started to focus on the poodle, and she could have sworn she saw the pet roll its eyes and shake its head. “Hurry up!” she said loudly, as her car went by the man with the cell phone. “Your dog is getting bored!”

“Excuse me?” said her father. “Who are you yelling at?”

“Oh, nothing,” said Violet. Her new glasses were her little secret, for now. And she couldn’t wait to explore the world through a new set of eyes!

QUESTIONS:
1. Violet visits the eye doctor after her glasses break. What happens when she visits the eye doctor?
 A. She refuses to do eye tests.
 B. She breaks her new pair.
 C. The doctor gives her medicine.
 D. She gets a new pair of glasses.
2. When in the story does Violet want to wear her glasses?
 A. at the beginning of the story
 B. in the middle of the story
 C. at the end of the story
 D. at the beg. and end of the story
3. How does Violet feel about her glasses at the end of the story?
 A. angry
 B. excited
 C. upset
 D. sad

The Disappearing Room

“Where’d you go?” asked Alejandro, with a tremble in his voice.

June coughed. She could taste dust in her mouth and felt a stinging on her knees. She could barely breathe after falling down the steps and onto the cold concrete.

“June, where are you?” called out Alejandro. The room was pitch black. He could hear his friend at the bottom of the steps, but in the darkness he could not see a thing. He turned around and pulled on the doorknob. The heavy, wooden door wouldn’t budge.

“I’m ok,” answered June. “I think I scraped my knees. Ouch! OK, I’m sure I scraped my knees. But everything else feels OK.” June felt a tear in her eye, but tried very hard to hold it back. She worried about how frightened Alejandro was.

“I can’t see anything in here!” exclaimed Alejandro, trying hard not to panic.

“I know. Me neither. Come down the steps, but don’t hold onto the rail! That’s why I fell. The rail stops halfway down.”

As Alejandro slowly descended into the basement, June looked in every direction. She wondered why she couldn’t make out any shapes. Even when her parents turned out every light in the apartment after bedtime, she could always make out the picture frames on her dresser. In this place, it was like her eyes were shut.

“I’m here,” said Alejandro, interrupting her thoughts. He clasped June’s hand and asked, “What now?”

June squinted and sighed. Then she noticed a bright speck in the corner of the room. A thin beam of light shot out from the speck. It pointed down to the floor and disappeared into the darkness.

“Do you see it?” asked Alejandro. Most of the room was still in darkness, but near that one spot of light, he could see what looked like chairs.

“Yeah!” confirmed June. She reached up towards the light. There was a curtain, covering a window. She opened it.

Alejandro and June covered their eyes. Their corner of the basement was flooded with light! Then, everything in the room became visible: the steps, the broken rail, the chairs, an old billiards table, and boxes and boxes of old newspapers.

“No luck with that door?” asked June.

Alejandro shook his head. June clambered onto a nearby chair and pushed at the window. It opened with a creak, and she pulled herself towards the opening.

“Let’s get back to the party,” she said with a smirk.
Julie's heart was pounding hard. She was in a tunnel. There were lights up ahead, but around her, everything was dark. She could hear music. It sounded like a carousel. She remembered being in this park before. It was about three years ago. She'd come here on a class trip. It was familiar. But it was strange, too.

Up ahead of her, she saw something moving. A horse? It was very odd. It was purple, with a golden mane. Something was definitely wrong. Nothing made any sense. She heard the sound of laughter behind her. Turning around, she was relieved. There was a group of children. They were wearing long flowing robes. They spoke in a language Julie had never heard before.

She went up to one of the girls in the group. She asked, "Where am I? Can you help me?" But the girl kept moving with her group. She didn't even seem to see Julie. Then the girl ran ahead and mounted the purple horse. The other children trailed behind.
Julie kept walking. She was trying to remember the path out of the park. It was so long ago. She didn't know if she could find her way back.

She was scared. Then she heard a voice. It was her mother's. There was a bright light. "Wake up, Julie!" her mother said. She pulled back the curtain. The sun poured into Julie's room. It was morning.

<table>
<thead>
<tr>
<th>Somebody</th>
<th>Wanted</th>
<th>But (Because)</th>
<th>So</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who is the main character?</td>
<td>What does the main character want?</td>
<td>What is the problem or conflict?</td>
<td>How does the main character solve the conflict</td>
<td>What was the resolution? How did the story end?</td>
</tr>
</tbody>
</table>
Whiz! Bing! Thump! Ding ding ding ding ding!

When they're jumbled up together, the sounds at an amusement park can become a roar. At the arcade, there is booming music and the sound of quarters clinking into slots. Two girls jump in unison as they compete in a dance game. Underneath it all, there is the rustling of prize tickets being folded up and jammed into pockets.

At the amusement park, there is noise everywhere. And where there is noise, there is motion.

On a hot summer day, some children hide out from the sun inside the cool, dark bumper car arena. One grinning boy is behind the wheel of a bright blue car with a thick, black bumper. He's too young to drive a real car, but here, he can speed around the track.

The boy sets his sights on a long-haired girl in a green car. She's sitting still, caught in something of a bumper car traffic jam. Then he slams his car into hers. The collision stops his car in its tracks, but it sends her car sailing away from his. In the crash, his car's momentum shifts to her car. They both laugh.

Elsewhere on the track, two other cars careen toward each other. When they crash, both bumper cars reverse course. They bounce backward, away from the point of impact. One driver's head is knocked sideways, but these mini crashes are all fun. No one is hurt and no one is crying.

In the arcade nearby, something similar is happening at the pool table. One player slams her stick into the
white cue ball. This sends the cue ball rolling quickly to the other end of the table, where it hits a striped
ball. In an instant, the cue ball stops moving. The striped ball takes on its momentum and sails into the
pocket.

Her opponent isn't having much luck at the pool table. He strikes the cue ball with the stick, but aims
badly. The white ball bounces off three edges of the pool table until it finally slows and comes to a stop.

At the air hockey table, the action of the game is happening almost too quickly to follow. One player
moves to protect her goal, but she's not holding onto her air hockey pusher tightly, and it goes flying out of
her hand when the puck hits it.

In the next room two boys are playing ping pong. One boy is new to the game and is losing. Every time he
hits the ball, he swings the paddle with too much force. The tiny ball has very little mass, but the boy's fast
swing sends it off the table entirely. In this case, the boy is giving the ball too much momentum.
Momentum, the quantity of motion in a moving object, is determined by an object's mass and its velocity.

Most of the time, it's against the rules to hit things. But at amusement parks, certain kinds of hitting are
part of the fun. The boy losing at ping pong doesn't mind, because he's enjoying hitting the ball as hard as
he can. At the batting cage, a girl wearing a helmet hits a baseball with so much force that it makes a loud
"crack!"

In the arcade, a man has paid two quarters to see how many small plastic animals he can whack with a
rubber mallet. When he hits them, their heads sink back inside the machine. His daughter is sitting in front
of another game. She's shooting small balls at stuffed monsters. If she hits one straight on, it falls over
and she wins tickets.

At another game, players pay a dollar for the chance to hit some milk bottles with a ball. If they knock all
the bottles over, they win a huge stuffed animal. This game is very hard to win even if players throw the
ball with a lot of force, because some of the bottles are very heavy. Often, the heavy bottle wobbles but
doesn't fall over.

One boy doesn't want to leave the amusement park, but he is exhausted. The batting cage, ping pong,
and the milk bottle game have left him with a very tired right arm. All the speed and crashes in the bumper
car were fun, but they tired him out as well. There's only so much motion most people can enjoy in a day.
Eventually, even the most energetic children run out of momentum. It's time for them to climb into bed and
be still.
Research a Person

STEP 1: Generate Research Questions
Create research questions that would fit into each category below. Record your questions on the chart.

<table>
<thead>
<tr>
<th>1. What did this person contribute, invent, lead, create, overcome, or discover?</th>
<th>2. When and where did this person live?</th>
<th>3. What key events in this person’s life made him/her who they are today?</th>
<th>4. Other Interesting information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 2: Conduct Your Research
Find out the answers to your questions (conduct an interview, read a book, biography, or website)

STEP 3: Write a Rough Draft
Compile your information into 3 organized paragraphs (introduction, body, conclusion).
Norfolk Public Schools
Science Learning in Place Plan: Grade 4 Lessons

Week 7: April 27 – May 1, 2020 (Review: Electricity and Scientific Investigation)

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will read the Interactive Notebook Passage entitled “Electrical Circuits” and answer questions for paragraphs 1 and 2. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Electrical Circuits” and answer questions for paragraphs 3 and 4. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Electricity: Famous Contributions” and answer questions for paragraphs 1 and 2. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Electricity: Famous Contributions” and answer questions for paragraphs 3 and 4. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Electromagnet Scientific Method Task Card and answer the Task Questions.</td>
</tr>
</tbody>
</table>

Week 8: May 4 – 8, 2020 (Review: Weather and Scientific Investigation)

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will read the Interactive Notebook Passage entitled “Storms” and answer questions for paragraphs 1 and 2. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Storms” and answer questions for paragraphs 3 and 4. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Cloud Types” and answer questions for paragraphs 1 and 3. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Cloud Types” and answer questions for paragraphs 4 - 7. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will analyze the Average Monthly Rainfall 1950 – 2007 data and answer the three bulleted questions.</td>
</tr>
</tbody>
</table>

Week 9: May 11 – 15, 2020 (Review: Natural Resources)

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will read the Interactive Notebook Passage entitled “Virginia’s Water Resources” and answer questions for paragraph 1 and the outline. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Virginia’s Water Resources” and answer questions for paragraphs 2 and 3. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Virginia’s Mineral and Land Resources” and answer questions for paragraphs 1 - 3. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will read the Interactive Notebook Passage entitled “Virginia’s Mineral and Land Resources” and answer questions for paragraphs 4 and 5. Students will justify their thinking by highlighting evidence from the text.</td>
<td>Students will divide the back of the interactive notebook passage pages into sections and illustrate each paragraph or outline based on information that was learned from each individual paragraph or outline.</td>
</tr>
</tbody>
</table>
Electrical Circuits

We have learned that electricity is a form of energy created when electrons flow or move between atoms. A continuous flow of electrons from atom to atom to atom creates an electrical current. An electrical current can be compared to the flow of water through pipes. However, a current of electricity travels in a path called a circuit. There are two main kinds of circuits: closed circuits and open circuits.

A closed circuit is like a road that crosses over a river by way of a bridge. A bridge allows your car to travel on a road, cross the water, and continue on the other side. In the same way, a closed circuit allows electrical energy (electrons) to continue flowing and moving. A closed circuit has no breaks in it to stop the flow of electricity.

On the other hand, an open circuit is like a road that ends at the river's edge. When there is no bridge, your car can go no farther. In an open circuit, a similar thing happens. The movement or flow of electrical energy (electrons) can go no farther. An open circuit has a break in it that stops the flow of electricity.

In addition to being open and closed, an electrical circuit can also have a different number of paths. A circuit that has only one pathway for the electrical current is called a series circuit. A circuit that has two or more pathways is called a parallel circuit.

SOL 4.3 PART 2 Electrical Circuits

Paragraph 1
- What is electricity?
- What is an electrical current?
- How does electricity travel?
- What are the two main kinds of circuits?

Paragraph 2
- What are the two main kinds of circuits?
- What is a closed circuit?

Paragraph 3
- What is an open circuit?

Paragraph 4
- What is a series circuit?
- What is a parallel circuit?
Electricity: Famous Contributions

Ben Franklin, Michael Faraday, and Thomas Edison made important contributions to our understanding and uses of electricity. Have you ever watched lightning during a storm and wanted to know more about it? An American by the name of Ben Franklin did.

Ben Franklin thought that lightning might be a “natural” electrical current. Ben knew that electrical currents would pass through metal. To find out whether lightning was an electrical current, he attached a metal key to a kite and flew it during a thunderstorm. When lightning struck the kite, Ben saw that the current did pass through the metal key. This discovery led him to develop many terms that we still use today when we talk about electricity: battery, conductor, negative, positive, charge, and electrician. Ben also knew that lightning was very dangerous. This led him to invent the lightning rod to protect buildings, ships, and people. Even though electricity was just a hobby for Ben Franklin, he made many important contributions.

An English scientist by the name of Michael Faraday continued Franklin’s studies on electricity. He is best remembered for his study of electromagnetism. Faraday discovered that electricity could be made by moving a magnet inside a wire coil. This discovery led him to build the first electric motor, generator, and transformer.

Like Ben Franklin, Thomas Alva Edison was an American scientist and inventor who also had an interest in electricity. When Edison was born in 1847, electricity was still a new idea. However, by the time he died, entire cities were lit by electricity. Much of this incredible progress was due to the work of Edison. In his lifetime, he patented 1,093 inventions! (A patent is a document that says no one else can copy the same invention.) Thomas Edison’s most famous invention was the light bulb.

SOL 4.3 PART 4 Electricity: Famous Contributions

Paragraph 1
- What famous people made important contributions to our understanding and uses of electricity?

Paragraph 2
- What did Ben Franklin think about lightning?
- How did he prove his hypothesis?
- What terms do we still use today?
- Why did he invent the lightning rod?

Paragraph 3
- What did Michael Faraday contribute?
- What did his discovery about electromagnetism lead him to do?

Paragraph 4
- What were the contributions of Thomas Alva Edison?
- What was his most famous invention?

Electromagnets

Kimmie made an electromagnet with 15 coils the picked up 4 paperclips. She wondered if using a thicker wire would make the electromagnet stronger.

Kimmie Plan:
1. Wrap a thin wire around a nail 15 times and connect to a battery. Count how many paperclips the electromagnet attracts.
2. Wrap a thick wire around a nail 15 times and connect to a battery. Count how many paperclips the electromagnet attracts.

Kimmie Data:

<table>
<thead>
<tr>
<th>Electromagnet</th>
<th>Paperclips Attracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Wire</td>
<td>4</td>
</tr>
<tr>
<td>Thick Wire</td>
<td>9</td>
</tr>
</tbody>
</table>

Questions:

1. Write a testable question this experiment would answer.
2. Identify the independent variable in this experiment.
3. Identify the dependent variable in this experiment.
4. Identify 2 constants or controlled variables in this experiment.
5. Use the data to write a conclusion for this experiment.
Storms

The Earth's weather changes all the time. It can be calm and quiet one minute and stormy and thunderous the next. Stormy weather can be dangerous with powerful winds and heavy precipitation. **Thunderstorms**, **hurricanes**, and **tornadoes** are examples of violent weather we call storms.

Thunderstorms

The most common type of storm in the state of Virginia is the **thunderstorm**. Thunderstorms usually have strong winds, heavy rain, thunder, and lightning. This type of storm occurs when a cold air mass called a **cold front** forces its way underneath a warmer mass of air and pushes the warm air upward. This happens often during the summer months in Virginia.

Hurricanes

Another storm that can affect the people of Virginia is the **hurricane**. In other parts of the world these powerful storms are called typhoons, cyclones, and even willy-willies! Hurricanes that hit Virginia form over the warm waters of the Atlantic Ocean in the late summer and early fall. Hurricanes are the largest storms on Earth. They begin as small thunderstorms and grow larger as they take in more and more heat and moisture from the warm ocean water. These powerful storms have strong winds that move in huge circles. The speed of the winds can be between 70 mph and 150 mph and can cause much destruction. During a hurricane, trees are blown over, roofs are torn off, and giant ocean waves are formed. These waves, along with the heavy rains that come with this type of storm, can result in severe flooding, destruction of property, and even death.

Tornadoes

Tornadoes also occur in Virginia. They often form without warning during thunderstorms as a column of warm air begins to spin upward forming a **funnel cloud**. Although a tornado is similar to a hurricane with its circular winds, a tornado is much smaller. Don't let its size fool you, however! It can be the most violent of storms with its spinning winds reaching speeds of 300 mph. These high winds can destroy property and are strong enough to pick up and move cars, trains, and even houses.

SOL 4.6 PART 3 Storms

Paragraph 1

- How often does weather change?
- What do we call violent weather?
- What are some examples of storms?

Paragraph 2

- What is the most common storm in Virginia?
- What is a thunderstorm?
- How does a thunderstorm occur?
- When do we usually have thunderstorms in Virginia?

Paragraph 3

- What is another powerful storm in Virginia?
- How do hurricanes form?
- What happens during a hurricane?

Paragraph 4

- How do tornadoes form?
- How is a tornado similar to a hurricane?
Cloud Types

What can weigh up to 10 million pounds, float in the air, and sometimes last for only 10 minutes? If you said a cloud, you're right! Let's investigate the different types of clouds!

Clouds are formed from warm air that rises from the earth. The warm air carries water vapor in it. This water vapor comes from water that evaporates from the surface of oceans, lakes, ponds, and other bodies of water. As the warm air rises, the water vapor in it cools down and changes into droplets of water or crystals of ice. These droplets of water connect themselves to tiny bits of dust and dirt floating in the air. As more and more droplets join together, a cloud is formed. If the water droplets become too large and heavy, they fall to the ground as precipitation.

Not all clouds are the same. Clouds can come in different shapes, sizes, and colors. These different clouds also help meteorologists predict the weather.

Cumulus clouds are fair weather clouds. They are fluffy and white with flat bottoms and look like big cotton balls in the sky. They are always changing shape and have very large spaces of clear blue sky between them. Precipitation does not usually fall from cumulus clouds.

Another fair weather cloud is the cirrus cloud. Cirrus clouds are feathery and look like comas or wisps of hair high in the sky. They are made from tiny ice crystals instead of water droplets like other clouds. No precipitation falls from cirrus clouds. Even though they are fair weather clouds, they often indicate that rain or snow will fall within several hours.

Some clouds, like stratus clouds bring foul weather. Stratus clouds are smooth, gray clouds that cover the whole sky. They are also the lowest clouds and look like a blanket of gray. This kind of cloud can stretch for hundreds of miles and can bring light rain and drizzle.

Cumulo-nimbus clouds are another kind of foul weather cloud. This kind of cloud is formed by cumulus clouds that join together. They keep growing until they become so full of moisture, they turn dark and heavy. Cumulo-nimbus clouds often bring thunderstorms with heavy rains, thunder, and lightning. Take a look outside. What kind of cloud do you see today?
The average monthly rainfall in an area is shown below.

![Average Monthly Rainfall 1950 – 2007](image)

- List the four months that get the MOST rain.
- List the four months that get the LEAST rain.
- Which is the rainiest season in this area? Explain your answer.
Virginia’s Water Resources

The state of Virginia is rich in natural resources such as clean water, minerals, forests, wildlife, and land. This wide variety of resources provides the materials Virginian’s need for their daily lives and their state’s economy. Let’s investigate the wealth of water resources found in the beautiful state of Virginia!

I. Virginia’s water resources are vast and varied.

A. Groundwater
 1. water that is found beneath the Earth’s surface

B. River
 1. a large natural stream of fresh water flowing along a definite path, usually into the sea
 2. Example: James River

C. Lake
 1. a body of water entirely surrounded by land and unconnected to the sea except by rivers or streams
 2. Example: Lake Drummond

D. Reservoir
 1. a natural or artificial lake or large tank used for collecting and storing water
 2. Example: Lake Jackson and John H. Kerr Reservoir

E. Bay
 1. a wide indentation in a shoreline having deep water that is surrounded by land on three sides
 2. Example: Chesapeake Bay

F. Ocean
 1. a very large body of salt water that is one of the five oceans on Earth
 2. Example: Atlantic Ocean

Virginia has over 49,000 miles of streams and rivers, 322,000 acres of lakes, 1,000,000 acres of wetlands, a huge bay and an ocean. With so much water surrounding us, every Virginian lives in an area called a watershed. A watershed is an area of land that drains into a river, lake, or wetland. Within the state of Virginia there are nine distinct watersheds. These nine are part of the Chesapeake Bay Watershed that covers approximately half of Virginia’s land area, parts of five neighboring states, and Washington D.C. Two major watersheds that can be found in Virginia are the Gulf of Mexico Watershed and the North Carolina Sounds Watershed.

The watersheds of Virginia are important to the people and animals living there. They support thousands of species of plants, fish, and animals; irrigate the state’s farmlands; provide water for thousands of homes and businesses; and serve as commercial and recreational resources for millions of people. To protect this important resource, we must be aware of what we do in our communities, homes, and backyards that will eventually make its way into our state’s waterways. Think about it! We all live downstream.
SOL 4.9 PART 1 Virginia’s Water Resources

Paragraph 1
- What natural resources make Virginia rich?
- What do these wide variety of resources provide for Virginia?

Paragraph 2
- What are some of Virginia’s water resources?
- What is groundwater?
- What is a river?
- What is an example of a river in Virginia?
- What is a lake?
- What is an example of a lake in Virginia?
- What is a reservoir?
- What is an example of a reservoir?
- What is a bay?
- What is an example of a bay in Virginia?
- What is an ocean?
- What is an example of an ocean near Virginia?

Paragraph 3
- Where does every Virginian live?
- What is a watershed?
- How many watersheds are there in Virginia?
- What major watershed are Virginia’s nine watersheds part of?

Paragraph 4
- What is vital to the people and animals living in Virginia?
- Why are the watersheds of Virginia vital to the people and animals of Virginia?
- How can we protect this vital resource?
Virginia’s Mineral and Land Resources

The state of Virginia is rich in a wide variety of natural resources. Let’s investigate the mineral and land resources found in Virginia!

Virginia’s mineral resources are extremely important to support modern life. They come from raw rock and mineral deposits that are mined from the Earth. Some of Virginia’s important minerals include limestone, granite, sand, gravel, and coal, which is the most important mineral resource in the state. Many Virginia industries and individuals depend on the mineral resources of our state. Some of these include the transportation industry, various manufacturers, farmers, artisans, scientists, the construction industry, and the mining industry, just to name a few! However, the mineral resources of Virginia are not replaceable. Once we remove them from the ground, they are gone. The Earth is not able to produce new supplies. Because of this, we must use our mineral resources wisely.

Another important natural resource in Virginia can be found right beneath your feet. Every time you step outside you are standing on one of our state’s greatest natural resources – soil! This resource really makes many other resources possible. The soil holds the water and nutrients necessary for plant and animal life to thrive as well as a large supply of minerals and raw rocks. The soil is also the home of valuable natural and cultivated forests. As you cross the state, the types of soil change from sandy, to rich and dark, to rocky and shallow but all support many important crops and industries. Some of these include the apple, tobacco, soybean, and animal feed industries.

In Virginia we use our soil and land resources in a variety of ways. Although most of the land in Virginia is privately owned (neighborhoods, farms, etc.), public land plays an important role in the lives of Virginians. Public lands include national parks, national forests, state parks, state forests, wildlife management areas, public beaches, and historic sites. These protected areas add to the quality of life for all Virginians. All in all, these public lands cover over 2 million acres in the state. Some specific sites include the Shenandoah National Park, the Blue Ridge Parkway, and Assateague Island National Seashore.

Conserving our mineral, land, and soil resources is challenging. Virginia is one of the fastest growing states in the nation. This makes it difficult to keep up with the outdoor recreational needs of its people while protecting the natural ecosystems necessary to keep all life in Virginia healthy and happy.
The development of computational fluency relies on quick access to number facts. Different models are used to develop an understanding of multiplication.

Equal Sets

<table>
<thead>
<tr>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
</table>

The same amount in each group, and the total number of items can be found by repeated addition or skip counting.

Array Model

Three rows of four columns for a 3-by-4 array.

Number line

The length model or number line also reinforces repeated addition or skip counting.

Strategies to learn the multiplication facts include:

<table>
<thead>
<tr>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>an understanding of multiples</td>
<td>skip counting by a given number, multiples continue infinitely</td>
</tr>
<tr>
<td>Zero property</td>
<td>Any number multiplied by zero is always 0</td>
</tr>
<tr>
<td>One as a factor</td>
<td>A number multiplied by 1, is always itself</td>
</tr>
<tr>
<td>Related Facts</td>
<td>Multiplication and division are inverse operations.</td>
</tr>
<tr>
<td>Commutative property</td>
<td>The order in which numbers are multiplied can be switched and the answer is still the same</td>
</tr>
</tbody>
</table>

Examples:

- **Zero property:**
 - "8 bowls of 0 scoops of ice cream" is 0 scoops (8 x 0 = 0)
 - "12 wallets with 0 dollars in each wallet" is 0 (12 x 0)

- **One as a factor:**
 - "1 cake with 7 layers" is 7 layers (1 x 7 = 7)
 - "6 glasses with 1 ounce of lemonade in each glass" is 6 ounces of lemonade (6 x 1 = 6)

- **Related Facts:**
 - 2 x 3 = 6 so 6 ÷ 2 = 3; knowing multiplication can help solve division facts

- **Commutative property:**
 - If you know 7 x 8 = 56 than switching the numbers; 8 x 7 = 56
 - 3 x 9 = 27 therefore, 9 x 3 = 27

Practice Problems

1. Select three multiplication facts that equal 36

 - 36 x 0
 - 5 x 6
 - 9 x 4
 - 12 x 3
 - 3 x 6
 - 6 x 6

2. What number belongs in the box to make this equation true?

 \[\square \div 3 = 8 \]

3. Complete the number sentence below that can be solved using 7 x 8 = 56

 \[56 \div \square = \square \]

 1 2 3 4 5 6 7 8 9

4. Which multiplication fact equals 49?

 - A. 9 x 6
 - B. 7 x 7
 - C. 6 x 10
 - D. 8 x 7

5. Which multiplication fact equals 81?

 - A. 81 x 0
 - B. 9 x 9
 - C. 8 x 1
 - D. 9 x 7

6. Create two different multiplication facts that equal 48.

 \[\square \times \square = 48 \]
 \[\square \times \square = 48 \]

1 2 3 4 5 6 7 8 9
4.4 b) estimate and determine sums, differences, and products of whole numbers

<table>
<thead>
<tr>
<th>Whole Numbers</th>
<th>a number from the set {0, 1, \ldots, 3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>Find a value that is close enough to the correct answer (key word: about)</td>
</tr>
<tr>
<td>49 x 8 is closest to 50</td>
<td></td>
</tr>
<tr>
<td>3 x 2 is closest to 3</td>
<td></td>
</tr>
<tr>
<td>Actual Product 147</td>
<td></td>
</tr>
<tr>
<td>Estimated Product 150</td>
<td></td>
</tr>
<tr>
<td>Difference - the answer to a subtraction problem (Remember to line up the place values in each number)</td>
<td></td>
</tr>
<tr>
<td>439,451 - 17,203</td>
<td></td>
</tr>
<tr>
<td>Sum - the answer to an addition problem (Remember to line up the place values in each number)</td>
<td></td>
</tr>
<tr>
<td>439,451 + 17,203</td>
<td></td>
</tr>
<tr>
<td>Product - the answer in a multiplication equation</td>
<td></td>
</tr>
<tr>
<td>30 x 4</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

When estimating numbers, estimate the numbers to largest place value in the least number

4.4 c estimate and determine quotients of whole numbers, with and without remainders

| Division - creating equal groups |
| Quotient – answer to a division problem |
| Divisor – number of groups |
| Dividend – number of items being put into equal groups |

1. 32 x 5 is closest to –
 A. 100
 B. 150
 C. 250
 D. 300

2. What is the sum of 52,075 and 141,238?

3. Estimate the difference between 52,069 and 35,951.
 A. 10,000
 B. 17,000
 C. 20,000
 D. 80,000

4. Find the quotient
 \[
 \begin{array}{c}
 7 \\
 \hline
 438
 \end{array}
 \]

5. Find the product of 29 x 47.
 A. 76
 B. 319
 C. 517
 D. 1363

 A. 197,959
 B. 141,935
 C. 60,135
 D. 58,135

7. Find the quotient of 89 ÷ 3.

8. Estimate the sum 681,405 and 56,971.
 A. 1,180,000
 B. 730,000
 C. 350,000
 D. 630,000
"Planely" a Problem

Mrs. Stine was bumped from an airplane flight. The reason they gave her was because of weight! Apparently an airplane can only hold 10,000 pounds besides the weight of the airplane itself. According to the list below, how much luggage and how many people would equal exactly 10,000 pounds? Determine some possible and reasonable combinations.

Luggage Weights
Small bag: 25 pounds
Medium bag: 50 pounds
Large bag: 75 pounds

People Weights
Child: 40 pounds
Teenager: 85 pounds
Adult (female): 135 pounds
Adult (male): 170 pounds

On the back of this page, explain your thinking of how you reached your answer.
4.6a add and subtract decimals

<table>
<thead>
<tr>
<th>Decimal Number</th>
<th>Expand a set of whole numbers, are a way of presenting a part of a whole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>Find a value that is close enough to the correct answer (key word: about) Estimate to the nearest whole number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Estimate the sum of 23.89 and 1.27</td>
</tr>
<tr>
<td></td>
<td>23.89 (\rightarrow) 24</td>
</tr>
<tr>
<td></td>
<td>+ 1.27 (\rightarrow + \frac{1}{25})</td>
</tr>
</tbody>
</table>

Sum - the answer to an addition problem
(Remember to line up the place values in each number)

<table>
<thead>
<tr>
<th>Example 1:</th>
<th>Example 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.89 + 7.406</td>
<td>6.7 + 21.93</td>
</tr>
<tr>
<td>52.89</td>
<td>6.7</td>
</tr>
<tr>
<td>+ 7.406</td>
<td>+ 21.93</td>
</tr>
<tr>
<td>60.296</td>
<td>28.63</td>
</tr>
</tbody>
</table>

Difference - the answer to a subtraction problem
(Remember to line up the place values in each number)

<table>
<thead>
<tr>
<th>Example 1:</th>
<th>Example 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.72 – 4.59</td>
<td>49.73 – 4.5</td>
</tr>
<tr>
<td>36.72</td>
<td>49.73</td>
</tr>
<tr>
<td>- 4.59</td>
<td>- 4.5</td>
</tr>
<tr>
<td>32.13</td>
<td>45.23</td>
</tr>
</tbody>
</table>

1. Write your answer in the box. 14.52 – 5.8

2. Solve: 2.38 + 9.6

 A. 3.34
 B. 11.98
 C. 11.34
 D. 33.4

3. Find the difference 25 – 3.25

 A. 0.75
 B. 3
 C. 21.75
 D. 22.25

4. What is the difference of the models below?

5. Find the sum of the models below.

Play the game below

Cut apart the letters and numbers on the dotted lines. Turn the letters and numbers upside down in separate piles. Randomly pick one letter and number card. Match the row and number selected. Add or subtract the numbers in the corresponding letter and number card (the letter card has a + or – to add or subtract). Try to solve 4 squares in a row. This can also be played with a partner (use pieces to mark the spots each person solved.) Record your answers the back of this paper or on another sheet of paper.

Example -

<table>
<thead>
<tr>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example 1:</th>
<th>Example 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.89 + 7.406</td>
<td>6.7 + 21.93</td>
</tr>
<tr>
<td>52.89</td>
<td>6.7</td>
</tr>
<tr>
<td>+ 7.406</td>
<td>+ 21.93</td>
</tr>
<tr>
<td>60.296</td>
<td>28.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 1:</th>
<th>Example 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.72 – 4.59</td>
<td>49.73 – 4.5</td>
</tr>
<tr>
<td>36.72</td>
<td>49.73</td>
</tr>
<tr>
<td>- 4.59</td>
<td>- 4.5</td>
</tr>
<tr>
<td>32.13</td>
<td>45.23</td>
</tr>
</tbody>
</table>
4.5 b) add and subtract fractions and mixed numbers having like and unlike denominators

Adding or subtracting fractions with like denominators - only the numerator changes. The denominator stays the same.

Example 1: \(\frac{2}{6} + \frac{1}{6} = \frac{3}{6} \)

Example 2: \(\frac{2}{6} - \frac{1}{6} = \frac{1}{6} \)

Adding or subtracting fractions with unlike denominators

1. Find the sum
2. Solve
3. Find the difference
4. Solve
5. What is the sum of the models below?

Example:

\[\frac{2}{3} + \frac{1}{4} = \frac{8}{12} \]

\[\frac{1}{4} \times \frac{3}{3} = \frac{3}{12} \]

Think: 3 times what number equals 12? “4” multiply the numerator and denominator by 4 to form the equivalent fraction.

Think: 4 times what number equals 12? “3” multiply the numerator and denominator by 3 to form the equivalent fraction.

Step 1: find LCM of the denominators of the fractions

\[3, 6, 9, 12, 15, 18 \]

\[4, 8, 12, 16, 20 \]

The least common multiple is 12.

If a sum is an improper fraction, it must be changed to a regular fraction.

1. Divide the denominator into the numerator for the whole number.
2. The remainder becomes the numerator and the denominator stays the same.

Example:

\[\frac{4}{7} + \frac{6}{7} = \frac{10}{7} = 1 \frac{3}{7} \]

Check to see if the answer is in simplest form.

1. Find the Greatest Common Factor (GCF) of the numerator and denominator.
2. Divide the numerator and denominator by the GCF to put the answer in simplest form.

Example:

\[\frac{2}{3} + \frac{1}{6} = \frac{3}{6} - 1, 2 \]

Divide numerator and denominator by GCF

\[\frac{3}{6} \div \frac{3}{3} = \frac{1}{2} \]

1 1/2 is simplest form of \(\frac{3}{6} \)

1. Find the sum \(\frac{1}{2} + \frac{1}{3} = \)
2. Solve \(\frac{5}{3} - 2\frac{1}{8} = \)
3. Find the difference \(\frac{3}{5} - \frac{1}{2} = \)
4. Solve \(2\frac{3}{4} + 3\frac{4}{6} = \)
5. What is the sum of the models below?

6. Model 1

Model 2

Read the problem below. Show you work on the back of this paper or on a separate sheet of paper.

Billy's mom said that she would bake an apple pie for the class party. Part of the recipe stated that she would need 4 1/4 cups of sugar and ¾ cups of milk.

Billy's mom took all the sugar out of her sugar jar and it measured 1 1/2 cups. She looked in the refrigerator and measured her milk. She had 1/2 cup. She told Billy that she had to go to the store before she could finish the pie. How much of each ingredient does she need to finish making the pie?
4.4d Study Guide

Learning Goals
SOL 4.4 The student will
d) create and solve single-step and multistep practical problems involving addition, subtraction, and multiplication, and single step practical problems involving division with whole numbers.

*On the state assessment, items measuring this objective are assessed without the use of a calculator.

Ways to show division:
Examples and Explanations:
In order to solve a division equation, use the following steps:

Traditional Division:

![Traditional Division example](image)

Partial Quotients Division

![Partial Quotients Division example](image)

Think: How many groups of 5 can I make with 86? At least 10. The first partial quotient is 10. (5 x 10 = 50)
Subtract 50 from 86

Think: How many groups of 5 can I make with 36? At least 5
The second partial quotient is 5. (5 x 5 = 25)
Subtract 25 from 36.

Think: How many groups of 5 can I make with 11? At least 2
The second partial quotient is 2. (5 x 2 = 10)
Subtract 11 from 10.

Think: Can I make any more groups of 5? In this case, the answer is no. This number (1) will be the remainder.

Add the partial quotients and record them at the top above the correct place.

<table>
<thead>
<tr>
<th>86 ÷ 5</th>
<th>17 R1</th>
</tr>
</thead>
</table>

1. There are 37 people going to the birthday party by car. How many cars will be needed if each car holds 5 people?

2. 780 people attended the 5 performances of the high school play. An equal number of people attended each performance. How many people attended the play each night?
 A. 116 B. 156
 C. 164 D. 166

3. After 6 quizzes, Nanette has scored a total of 564 points. If Nanette earned the same score on each quiz, what was that score?

4. There are 136 players trying out for basketball teams. Each team will have exactly 9 players. How many teams are there? How can you interpret the remainder?
 A. Drop the remainder.
 B. Add 1 to the quotient.
 C. The remainder is the answer.
 D. Subtract 1 from the quotient.
Learning Goals

4.5 a) determine common multiples and factors, including least common multiple and greatest common factor;
 c) solve single-step practical problems involving addition and subtraction with fractions and mixed numbers.

Finding Common Denominators

\[
\begin{align*}
\frac{3}{4} + \frac{2}{5} &= \frac{1}{2} \\
\text{List the multiples for both denominators.} \\
\text{Find the LEAST COMMON MULTIPLE.} \\
4: 4, 8, 12, 16, 20, 24 \\
5: 5, 10, 15, 20, 25 \\
\text{Make each fraction into an equivalent fraction with the same denominators.} \\
\frac{3}{4} \times \frac{5}{5} &= \frac{15}{20} \\
\frac{2}{5} \times \frac{4}{4} &= \frac{8}{20}
\end{align*}
\]

Steps to Simplify Fractions

1. List ALL the factors of the numerator and denominator.
 \[
 \frac{9}{33} = 1, 3, 9
 \]
2. Find ALL of the factors they have in common.
 \[
 \frac{9}{33} = 3
 \]
3. Divide BOTH the numerator AND the denominator by their Greatest Common Factor.
 \[
 \frac{3}{11}
 \]
4. Write the Simplified fraction!

Use Equivalent Fractions to Add and Subtract Fractions

Vocabulary

- Denominator – The bottom number of a fraction.
- Numerator – The top number of a fraction.
- Equivalent – The same as.

Example 1: Reduce \(\frac{6}{8} \) to simplest form

Step 1: List the factors of both the numerator and denominator.
 \[
 6: 1, 2, 3, 6 \\
 8: 1, 2, 4, 8
 \]
Step 2: Find the GCF (greatest common factor):
 The GCF of 6 and 8 is 2
Step 3: Divide the numerator & denominator by the GCF, 2.
 \[
 \frac{6}{8} \div 2 = \frac{3}{4}
 \]
Final answer: \(\frac{3}{4} = \frac{6}{8} \)

Example 2: Reduce \(\frac{10}{9} \) to simplest form

Step 1: Improper fraction (numerator is larger than denominator).

Use division to convert to a mixed number: \(\frac{10}{9} \) is \(10 \div 9 \).

The remainder is written as a fraction = \(\frac{1}{9} \)

Step 2: The GCF of 1 and 9 is 1, so it is already in simplest form. Final answer: \(1 \frac{1}{9} \)

All answers must be in Simplest Form.

Example 2 (continued):

Step 1: Improper fraction (numerator is larger than denominator).

Use division to convert to a mixed number: \(\frac{10}{9} \) is \(10 \div 9 \).

The remainder is written as a fraction = \(\frac{1}{9} \)

Step 2: The GCF of 1 and 9 is 1, so it is already in simplest form. Final answer: \(1 \frac{1}{9} \)
1.) Timmy took a bag of candy to school with him. The bag was \(\frac{5}{8} \) full. During the day, he gave away \(\frac{1}{4} \) of the bag of candy. How much candy did Timmy have left?

- A.) \(\frac{3}{8} \)
- B.) \(\frac{1}{2} \)
- C.) \(\frac{3}{4} \)
- D.) \(\frac{7}{8} \)

2.) Jenna has \(\frac{3}{4} \) cup of laundry detergent. She uses \(\frac{1}{3} \) cup of laundry detergent for each load she washes. How much detergent is remaining after she washes a load of laundry?

- A.) \(\frac{1}{6} \)
- B.) \(\frac{1}{4} \)
- C.) \(\frac{1}{3} \)
- D.) \(\frac{5}{12} \)

3.) Identify the common factors of 28 and 42. Circle ALL correct answers.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>28</td>
<td>42</td>
</tr>
</tbody>
</table>

4.) Which list of number contains only common factors of 10 and 30?

- A.) 2, 5, 10
- B.) 2, 5, 15, 30
- C.) 2, 5, 15
- D.) 3, 6, 9, 15

5.) What is the greatest common factor of 3 and 18?

- A.) 64
- B.) 4
- C.) 8
- D.) 16

6.) What is the least common multiple of 4 and 16?

- A.) 64
- B.) 4
- C.) 8
- D.) 16

4.6b Study Guide
Adding and Subtracting Decimals

Learning Goals: Solve single-step and multistep problems involving addition and subtraction with decimals.

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>The answer in an addition equation.</td>
<td>(3000 + 46 = 3046) is the sum</td>
</tr>
<tr>
<td>Difference</td>
<td>The distance between 2 numbers on a number line, the answer to a subtraction equation.</td>
<td>(5.42 - 3.46 = 1.96) is the difference</td>
</tr>
<tr>
<td>Regrouping</td>
<td>An equal exchange from one place to the next (the terms trading/borrowing and carrying are also often used when regrouping)</td>
<td></td>
</tr>
</tbody>
</table>

Examples and Explanations:

Addition and subtraction of decimals is like adding and subtracting whole numbers. The only thing we must remember is to line up the place values correctly. The easiest way to do that is to line up the decimal points.
1. The bicycle Janet wants to buy costs $87.99. She has $59.50. How much more money does Janet need to buy the bicycle?

2. What is $56.834 - 3.497$?

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>53.337</td>
</tr>
<tr>
<td>B</td>
<td>53.463</td>
</tr>
<tr>
<td>C</td>
<td>60.331</td>
</tr>
<tr>
<td>D</td>
<td>91.804</td>
</tr>
</tbody>
</table>

3. $24.8 + 3.245 =$

4. The winning speed in the 2004 Daytona 500 was 156.345 miles per hour. The winning speed in 1998 was 172.712 miles per hour. How much faster was the winning speed in 1998 than in 2004?

5. Tom worked 5.5 hours on Saturday. He worked 4.75 hours on Sunday. How many hours did Tom work over the weekend?

1. A restaurant bill totaled $70.40. Sam’s family paid with a $100 bill. How much change will the family receive?

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$30.40</td>
</tr>
<tr>
<td>B</td>
<td>$30.60</td>
</tr>
<tr>
<td>C</td>
<td>$29.60</td>
</tr>
<tr>
<td>D</td>
<td>$19.60</td>
</tr>
</tbody>
</table>

Days 9 and 10

Formative Assessment-4.4, 4.5, 4.6

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>There are 80 balloons in each bag. Carl bought 6 bags of balloons. How many balloons are there in all?</td>
</tr>
</tbody>
</table>
| | A. 420
| | B. 480
| | C. 540
| | D. 560 |
| 2. | The Moon can be as far away as 251,966 miles or as close as 225,744 miles from Earth. What is the difference in the distances that the Moon can be from Earth? |
| | A. 25,222 miles
| | B. 26,222 miles
| | C. 35,222 miles
| | D. 36,222 miles |
| 3. | Pedro wants to read a 476-page book in 3 days. He read 188 pages Monday and 169 pages Tuesday. How many pages does Pedro have left to read Wednesday? |
| | A. 111
| | B. 119
| | C. 121
| | D. 129 |
| 4. | Of the songs in Ellie’s phone, $\frac{3}{12}$ are country music. Another $\frac{6}{12}$ of her songs are pop music. What fraction of the songs on Ellie’s phone are either country or pop music? |
| | A. $\frac{1}{2}$
| | B. $\frac{2}{3}$
| | C. $\frac{3}{4}$
| | D. $\frac{5}{6}$ |
5. A pitcher was \(\frac{5}{6}\) filled with water before dinner. After dinner, the pitcher was \(\frac{1}{4}\) filled. How much of the water was drunk during dinner?
 A. \(\frac{5}{12}\)
 B. \(\frac{1}{2}\)
 C. \(\frac{7}{12}\)
 D. \(\frac{2}{3}\)

6. It rained \(\frac{7}{8}\) inch in Springfield yesterday. It rained \(\frac{1}{2}\) inch before noon. How much did it rain after noon?
 A. \(\frac{1}{4}\) inch
 B. \(\frac{3}{8}\) inch
 C. \(\frac{1}{2}\) inch
 D. \(\frac{2}{3}\) inch

7. Marcus jogged 5.7 kilometers Monday and 3.68 kilometers Tuesday. How much farther did Marcus jog Monday than Tuesday?
 A. 1.39 kilometers
 B. 1.92 kilometers
 C. 2.02 kilometers
 D. 2.12 kilometers

8. An airplane traveled 942 miles in 3 hours. The airplane traveled the same number of miles each hour. How many miles did the airplane travel each hour?
 A. 304 miles
 B. 314 miles
 C. 324 miles
 D. 334 miles

9. Jenna played in \(\frac{5}{8}\) of her team’s last soccer game. In the prior game, she played in \(\frac{1}{2}\) of the game. How much more did Jenna play in the last game?
 A. \(\frac{1}{16}\)
 B. \(\frac{1}{8}\)
 C. \(\frac{3}{16}\)
 D. \(\frac{1}{4}\)

10. Samantha bought 3.75 liters of bottled water and 2.5 liters of sparkling water. How many liters of water did Samantha buy in all?
 A. 5.25 liters
 B. 5.8 liters
 C. 6.25 liters
 D. 6.8 liters

11. Devon had \(\frac{1}{2}\) pound of potatoes. He bought some more potatoes. Now Devon has \(3\frac{7}{8}\) pounds of potatoes. Exactly how many pounds of potatoes did Devon buy?
 A. \(3\frac{3}{8}\)
 B. \(3\frac{5}{8}\)
 C. 4
 D. \(4\frac{3}{8}\)

12. A store had a total of 6,721 customers on Friday, Saturday, and Sunday. This store had exactly:
 • 2,704 customers on Saturday
 • 288 more customers on Sunday than on Saturday

 Exactly how many customers did the store have on Friday?
 A. 9,713
 B. 4,305
 C. 3,729
 D. 1,025
The common errors on the SOL test involves students finding the area when a given situation describes the perimeter and vice versa.

Examples:

What is the perimeter of this pentagon?

- Identify all the side lengths of the pentagon.
- Add the lengths of the five sides.
 \[4\text{ft} + 4\text{ft} + 5\text{ft} + 5\text{ft} + 3\text{ft} = 21\text{ft}\]
- The perimeter of the pentagon is 21 ft.

What is the area of the rectangle?

- Write the formula for the area of the rectangle. \(A = l \times w\)
- Multiply the length by the width.

 The length is 7 cm and the width is 4 cm

 \[A = 7 \times 4 = 28 \text{cm}^2\]

 The area of the rectangle is 28 cm²

What is the perimeter of the rectangle?

- Identify all the side lengths of the rectangle.
- Add the lengths of the four sides.

 \[7\text{cm} + 4\text{cm} + 7\text{cm} + 4\text{cm} = 22\text{cm}\]

 The perimeter of the rectangle is 22 cm.

What is the area of the square?

- Write the formula for the area of the square. \(A = s \times s\)
- Multiply the side length by the side length.

 The side length is 4 in.

 \[A = 4 \times 4 = 16 \text{in}^2\]

 What is the perimeter of the square?

- Identify all the side lengths of the square.
- Add the side lengths of the four sides.

 \[4\text{in} + 4\text{in} + 4\text{in} + 4\text{in} = 16\text{in}\]

 The perimeter of the square is 16 in.

SOL 4.7 Practice:

Figures A, B, C, D, and E are shown.

1) Which figures have a perimeter of 48 centimeters?

2) Which figures have an area of 48 square centimeters?
The common errors on the SOL test suggest that students may have difficulty applying measurement skills from earlier grade levels to determine the length of an object and then using the length to find the solution to a practical solution. Students also may be unsure how to deal with measurements involving more than one unit.

Examples:

<table>
<thead>
<tr>
<th>What is the length of this pen to the nearest (\frac{1}{8}) inch?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Inches</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Line up the left end of the ruler with the left end of the pen.</td>
</tr>
<tr>
<td>Read the labeled marks on the ruler that are closest to the right end of the pen. The labeled marks closest to the end of the pen are 3 and 4 inches.</td>
</tr>
<tr>
<td>Count the number of intervals between 3 and 4 on the ruler. There are 8 intervals, so each interval is (\frac{1}{8}) inch. The pen aligns with the sixth mark from the 3, so the pen is (3\frac{6}{8}) inches long.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 inches = 1 foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tape measure can measure a distance up to 8 feet. How many inches long is the tape measure?</td>
</tr>
<tr>
<td>There are 12 inches in 1 foot.</td>
</tr>
<tr>
<td>Since 1 foot is equivalent to 12 inches, multiply 8 feet by 12 inches.</td>
</tr>
<tr>
<td>8 x 12 = 96 inches</td>
</tr>
<tr>
<td>The tape measure is 96 inches long.</td>
</tr>
</tbody>
</table>

SOL 4.8 Practice:

1) Measure the length of this ice cream sandwich to the nearest inch.

Tom will place 4 of these ice cream sandwiches, without overlapping, to decorate part of the cake. Which measurement is closest to the total length of 4 ice cream sandwiches?

- a. 2 inches
- b. 4 inches
- c. 6 inches
- d. 8 inches

2) 1 foot = 12 inches

John’s father is 6 feet 4 inches tall. John’s father is exactly _______ inches tall.
→ **Analog Clock** – clock that has moving hands (like the diagrams above).
→ **Elapsed Time** – the amount of time that passes from the beginning of an event to its end.

Example:

You arrive at your friend’s house at 5:00 P.M. and leave at 8:25 P.M. How long did you stay at your friend’s house?

→ Make a number line from 5 P.M. (start time) to 8:25 P.M. (end time).
→ Make and label jumps in increments of hours and minutes until you get to your end time.

[Image of number line]

→ Add the time: 1 hour + 1 hour + 1 hour + 10 minutes + 10 minutes + 5 minutes = **3 hours 25 minutes**

Terry left his house at 6:00 A.M. He returned to his house at 1:30 P.M. How long was Terry gone?

→ Make a number line from 6:00 A.M. to 1:30 P.M.
→ Make and label jumps in increments of hours and minutes until you get to your end time.

[Image of number line]

→ Add the time: 1 hour + 30 minutes = **7 hours 30 minutes**

SOL 4.9 Practice:

1) Shawna began her homework at 4:30 P.M. She finished at 6:15 P.M. How long did Shawna do homework?

2) Brent had basketball practice from 11:30 A.M. to 1:57 P.M. How long was Brent’s basketball practice?
Day 14

SOL 4.7 – 4.9 Checkpoints

1) Determine the elapsed time: 10:15 A.M. – 5:42 P.M. (CIRCLE YOUR ANSWER BELOW.)

| 8 hours 30 minutes | 6 hours 21 minutes | 7 hours 27 minutes |

2) Gabriel drew the square and the rectangle below. What is the perimeter of the square?

3 feet = 1 yard
Bridget’s backyard is 4 yards. How many feet is Bridget’s backyard?

3) 3 feet = 1 yard
Bridget’s backyard is 4 yards. How many feet is Bridget’s backyard?

4) Determine the elapsed time between the start and end times listed. Write your answer in the box. Be sure to include hours and minutes.

Start Time: 9:13 A.M. End Time: 7:37 P.M.

5) What is the closest length of the paperclip?

6) The baker made his pizza dough at 1:18 P.M. The dough had to rise for 1 hour 30 minutes before it was ready to bake. What time would the dough be finished rising and ready to bake?

7) What is the area and perimeter of the rectangle?

<table>
<thead>
<tr>
<th>12 in.</th>
<th>7 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Perimeter</td>
<td></td>
</tr>
</tbody>
</table>
1) A basketball team left the school at 2:55 P.M. and returned at 5:45 P.M. What was the total amount of time that passed between the time this team left and returned to the school?

 a. 2 hours 10 minutes
 b. 2 hours 50 minutes
 c. 3 hours 10 minutes
 d. 3 hours 50 minutes

2) Perimeter is used to find –

 a. Distance from a ceiling to the floor
 b. Amount of blacktop on a playground
 c. Amount of floor space covered by a carpet
 d. Distance around the edge of a swimming pool

3) A restaurant has 3 gallons of soup. What is the total number of pints of soup this restaurant has?

 a. 12 pints
 b. 18 pints
 c. 24 pints
 d. 48 pints

4) Which of these objects has a mass closest to 1 kilogram?

 a. A desk
 b. A pencil
 c. A dictionary
 d. A sheet of paper

5) What is the closest to the length of this hair comb, in inches?

6) What is the perimeter of the triangle?

7) Determine the elapsed time: **1:06 A.M. – 12:12 P.M.**

8) Each side of a square poster measures 3 feet. What is the area of the poster?
Elementary Art-Learning in Place Packet

Grades K-5
April 27-May 15, 2020

<table>
<thead>
<tr>
<th>Grades K-1</th>
<th>Instructions</th>
<th>Vocabulary to Discuss</th>
<th>Examples (Do not copy)</th>
</tr>
</thead>
</table>
| **April 27-May 1** | Go outside and take a walk, don’t forget to take your paper with you. Crisscross applesauce and draw a flower or plant using a pencil or pick the flower and take it indoors to draw. This is called observational drawing, which means drawing from life. Add color using crayons, markers, colored pencils or watercolor. | Observational drawing
Line
Color
Nature | ![Flower Drawing](image1.png) |
| **May 4-8** | Draw a picture of your favorite dessert. Think about the shapes that make the object. Use different types of lines. Create a pattern on the background. | Shape
Color
Line-(straight, zigzag, broken, dotted, wavy)
Background
Pattern | ![Dessert Drawing](image2.png) |
| **May 11-15** | Go for a nature walk with your family. Draw one of the animals that you see in your neighborhood. Draw the shape of the animal and then add color to create the texture of the animals (fur, scales, hair, or feathers). Don’t forget to draw where the animal lives-habitat. The entire page should be filled with color. | Shape
Texture (how something feels or looks like it feels)
Habitat
Color | ![Animal Drawing](image3.png) |

Grades 2-3

<table>
<thead>
<tr>
<th>Grades 2-3</th>
<th>Instructions</th>
<th>Vocabulary to Discuss</th>
<th>Examples (Do not copy)</th>
</tr>
</thead>
</table>
| **April 27-May 1** | Go outside and take a walk, don’t forget to take your paper with you. Find plant life or flowers you would like to draw. Crisscross applesauce and begin drawing what you see with a pencil. This is called observational drawing. | Observational drawing
Nature
Foreground
Background
Line
Color | ![Plant Drawing](image4.png) |
observational drawing, which means drawing from life. After completing your sketch, take your art inside and add color using crayons, markers, colored pencils or watercolor.

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity Description</th>
<th>Techniques Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 4-8</td>
<td>Draw a chair. A chair may seem like a complex object, break it down into smaller shapes. Use your observational drawing skills. Really look at the chair and how all of the shapes connect together. Add shadow and horizon line.</td>
<td>Observational Draw Shapes Form Shadow Horizon Line</td>
</tr>
<tr>
<td>May 11-15</td>
<td>Draw a picture of your favorite toy. Think about the shapes that make the whole object. Add color and then add shadow and highlight to the color. Add a horizon line and color to the background.</td>
<td>Observational Draw Shapes Shadow Highlight Background</td>
</tr>
<tr>
<td>Grades 4-5</td>
<td>Go outside and take a walk, don’t forget to take your paper with you. Find plant life or flowers you would like to draw. Crisscross apple sauce and begin drawing what you see with a pencil. This is called observational drawing, which means drawing from life. After completing your sketch, take your art inside and add color using crayons, markers, colored pencils or watercolor.</td>
<td>Observational drawing Nature Foreground Middle ground Background Line Color</td>
</tr>
<tr>
<td>May 4-8</td>
<td>Begin in one spot on the paper and start drawing doodles. Create as many doodles as you like, no doodles should overlap or interfere with any other doodles. If you wish, you can create a doodle theme. In other words, draw only geometric shapes (ie squares, triangles, circles etc.) or draw only organic shapes (squiggly “natural” shapes). When you have filled your paper with doodles, begin coloring in. You may use solid color, lines, texture, or pattern to fill the entire page.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>May 11-15</td>
<td>Contour Portrait Drawing: A contour drawing is an excellent way to train the eye to draw what it really sees rather than what it thinks it sees. Look in the mirror. Pick a point on the object where the eye can begin its slow journey around the contour or edge of the object. Remember, the eye is like a snail, barely crawling as it begins its journey. When the eye begins to move, so should the hand holding the pencil. Try drawing the entire contour of the object without lifting your pencil from the paper.</td>
<td></td>
</tr>
</tbody>
</table>

Are you looking for more art ideas?

Silly Drawing Prompts

Animals

1. Draw a llama surfing.
2. Draw a fish swimming in something other than water.
3. Combine two animals to create a new one.
4. Draw a shark eating a cupcake.
5. Draw a crab at a birthday party.
6. Draw a seahorse in a blizzard.
7. Draw a dinosaur crying.
8. Draw an animal with arms for legs and legs for arms.
9. Draw a pug on a treadmill.
10. Draw a horse throwing a horseshoe.
11. Draw a shark waterskiing.
12. Draw a walrus in a beach chair.
13. Draw a circus elephant standing on a ball.
14. Draw a koala bear sitting on a trashcan.
15. Draw a lizard putting on lipstick.
16. Draw a squirrel roasting a marshmallow.
17. Draw an octopus with spoons for legs.
18. Draw a mouse riding a motorcycle.
19. Draw a flamingo doing ballet.
20. Draw a butterfly eating a steak.
21. Draw a cat chasing a dog.
22. Draw a lobster dancing.
23. Draw a cat playing a sport.
24. Draw a chicken skydiving.

Food

1. Draw a piece of fruit in outer space.
2. Draw a Pop Tart lifting weights.
3. Draw a loaf of bread at a disco.
4. Draw a rainstorm of sprinkles.
5. Draw french fries on a rollercoaster.
6. Draw a food eating another food.
7. Draw a walking taco.
8. Draw chicken wings flying.
9. Draw a banana slipping on banana peels.
10. Draw a cookie with googly eyes instead of chocolate chips.
11. Draw a pineapple rollerblading.
12. Draw a piece of asparagus snowboarding.
14. Draw a donut riding a skateboard.
15. Draw a turkey leg eating a turkey sandwich.
16. Draw a cheeseburger wearing a dress.
17. Draw a banana in pajamas.
18. Draw a peanut butter and jelly sandwich on vacation.
19. Draw an apple talking to your art teacher.
20. Draw a hot dog flying.
21. Draw a lemon making orange juice.
22. Draw an ice cream cone eating a Popsicle.
23. Draw a garden of lollipops.
Mark below for each week you complete a MUSIC BINGO!

_ _ _ _ _

___April 27-May 1 _ _ _ _ _

___May 4-8 _ _ _ _ _

___May 11-15 _ _ _ _ _

Music Learning in Place
Rhythm writing using 8th note and 16th note patterns.

Complete the exercise below by using the rhythm patterns above. Create your own rhythms by notating a pattern and writing its corresponding word on the line underneath it. Remember the time signature limits each measure to 2 beats (2 patterns from above). When complete:

1) Practice saying the words.
2) Practice saying and clapping the words together.
3) Perform by saying the words in your head while clapping the rhythm pattern.
Physical Education Fitness Calendar

Directions: Complete each fitness challenge for each day of the month. When you are finished, pass it in to your Physical Education teacher.

Note: If you miss a day, that’s ok. Just make up that day on the next day. The idea is to do something active everyday!!!

April 2020

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hold a push-ups position while saying the months of the year 3 times.</td>
<td>Skip around the house while you sing the school song.</td>
<td>Crab Walk from the kitchen to your bedroom (even if it’s up or down the stairs)</td>
<td>Rest Day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reach up off the floor 15 times.</td>
<td>Do squats while watching 3 commercials on T.V.</td>
<td>Rest Day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Do 60 seconds of arm circles.</td>
<td>Rest Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spell your full name while you jump in the air for each letter.</td>
<td>Do 50 side bends. While doing them sing your favorite song out loud.</td>
<td>Rest Day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reach and touch your toes while counting 50. Go slow! Repeat 3 times.</td>
<td>Challenge a family member or friend to a “Jumping Jack race 50” contest.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Make up your own fitness challenge and draw it on the back of this paper.</td>
<td>Pick One Of Your Favorite Days And Do It Again!!!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Name: Parent Signature: Classroom Teacher:

Challenge a family member or friend to a “Mountain Climber” race.

Get some cases of food and do arm curls while a family member or friend counts in 10’s. Use both arms.

Keep your legs straight while you bend relaxed at the waist. Breathe in and out slowly making your hands reach for the floor.

Do the butterfly stretch while saying out loud 10 words that begin with the letter “J”.

Stand in front of a mirror and flex every muscle you can think of.

Get some cases of food and do arm curls while a family member or friend counts in 10’s. Use both arms.

Pretend to hole hoop while saying the alphabet forwards and backwards. If you have a hula hoop, use it.

Dance to one of your favorite songs.

Spell your full name while you jump in the air for each letter.

With your back flat against the wall, do the Wall Sit for 60 seconds.

Rest Day

Rest Day

Rest Day

Rest Day
Physical Education Fitness Calendar

Directions: Complete each fitness challenge for each day of the month. When you are finished, pass it in to your Physical Education teacher.

Note: If you miss a day, that's ok. Just make up that day on the next day. The idea is to do something active everyday!!!

May 2020

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Name:</td>
<td>Parent Signature:</td>
<td>Check off (✓)</td>
<td></td>
<td>Touch your elbows to knees 50 times while keeping your eyes closed.</td>
<td>Keep your belly on the floor while you push up off the floor. Repeat 20 times.</td>
<td></td>
</tr>
<tr>
<td>Classroom Teacher:</td>
<td></td>
<td>when you finish each day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Do squats while singing the school song.
2. Reach to both sides of your body while listening to one of your favorite songs.
3. Do 15 push-ups.
4. Do Jumping Jacks every time a commercial comes on T.V.
5. Stretch your calf muscles while you watch 3 commercials on T.V.
6. Do 25 back leg kicks for each leg.
7. Do 50 windmills touching one foot, then the other.
8. Rest Day
9. Rest Day
10. With both legs straigh, see how far you can reach.
11. Do windmills while counting to 50.
12. Do 25 back leg kicks for each leg.
13. Do 50 windmills touching one foot, then the other.
14. Rest Day
15. Hold one foot while balancing and counting to 20. Repeat holding the other foot, do that 3 times per leg.
16. Rest Day
17. Do a jumping jack for every letter of the alphabet
18. Jog 3 times around the outside of your home or block.
19. Make up your own fitness challenge and draw it on the back of this paper.

EXERCISE

Pick One Of Your Favorite Days And Do It Again!!!
What's Your Name?

Spell out your full name and complete the exercise listed for each letter. For a greater challenge include your middle name & do each one twice! For variety you can use a different historical person's name or a family member's name each time.

A 10 jumping jacks
B 5 push-ups
C 1 burpee
D 20 high knees
E 5 crunches
F 10 mountain climbers
G 5 squats
H 10 front lunges
I 10 side lunges
J 10 second wall sit
K 5 calf raises
L 5 second plank
M 3 squat jumps
N 10 second jump rope
O 10 Russian twists
P 5 plie squats
Q 10 arm circles
R 10 skaters
S 10 second jog in place
T 10 butt kickers
U 5 inchworms
V 5 tricep dips
W 3 star jumps
X 5 bird dogs
Y 10 leg raises
Z 5 squat jacks

Consult a doctor before starting an exercise program - www.theysmell.com
<table>
<thead>
<tr>
<th>Subject</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4: Gifted Opportunities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gifted Education & Academic Rigor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 27 – May 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ready, set, THINK! Complete a Math and/or Communication Skills/Reading activity each week on a separate piece of paper to share with your Gifted Resource Teacher. If your brain needs more, then do the STEM challenge for an extra brain boost! Enjoy!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gifted Opportunities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 27 – May 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ready, set, THINK! Complete a Math and/or Communication Skills/Reading activity each week on a separate piece of paper to share with your Gifted Resource Teacher. If your brain needs more, then do the STEM challenge for an extra brain boost! Enjoy!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superbowl Sunday is the final day of the entire playoff season. The playoffs start with 16 teams. This is a single elimination tournament. That means if a team loses once, they are out. Determine the number of games that will have to be played by the time the Superbowl Champion is crowned. Then show your mathematical thinking. How did you determine the answer?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justin and David like to collect pictures of all types of cars and trucks. Justin already had 30 pictures. He decided to find 2 new pictures each week. David already had 20 pictures and he decided to find 3 new pictures each week. Justin said that he would always have more pictures than David. David said he did not think Justin was correct. Who was correct? Show your mathematical thinking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My dog, Charlie, got sprayed by a skunk and had to have a tomato juice bath. My bathtub holds 21 gallons of water. How many pints of tomato juice do I need to buy to fill my tub half way for my dog’s bath?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hint: 2 pints = 1 quart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 quarts = 1 gallon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Skills/Reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If you could pick five places in the world to visit, where would they be and why? Write a page explaining your five choices. These “places” could be cities, tourist sites, etc. For some extra credit, draw a picture of each place (with you there!)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick any story or book to read. Choose any character in the story and think about him/her. How is that character like you? How is the character different from you?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose any story (could be one you’ve already read) and answer the following: 1) List the major events of the story in order. 2) Explain how one event caused another event or situation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM Challenge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create a device to get a raw egg safely to the floor from the table using only found materials in your home. Your egg must stay in your device without cracking. On a piece of paper write down your results, draw a picture of your design and include why you chose those particular materials. Did it work? Why or why not?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create the tallest structure you can using a deck of cards. Measure your structure using a tape measurer or ruler, record your findings, and then see if you can improve your structure to make it taller. Were you successful? Why or why not?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design something using a paper towel roll, string, tape and a pencil. Give your invention a name and write down how it can be used. Take a picture to share with your teacher and peers, or bring your new invention to school. Don’t forget to patent your cool invention so no one steals your cool idea! (What is “patent”?*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Don’t forget to read every day! Your brain will thank you😊.
Directions: Use notebook paper to complete these learning activities.

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point to each picture above and say the words 3 times.</td>
<td>Watch a movie or TV show about living things. What living things did you see in the movie or on TV?</td>
<td>Read a book or magazine in English or your home language about living things.</td>
<td>Look inside your home. What living things can you find in your home?</td>
<td>Look out your window or take a walk with a parent. What living things do you see outside?</td>
</tr>
</tbody>
</table>
| Draw and label 3-5 other living things. | Write 3-5 sentences using describing words (number, size, or color): I saw _____.
Example: I saw two big, pink flowers. | Talk to a family member about the living things you read about. | Write 3-5 sentences and use describing words (number, size, or color): In my home, I see _____.
Example: I read a book about zoo animals. There were big, yellow lions and tall giraffes. There was a family of five monkeys. | Make a list of each living thing you see. Draw a picture beside each word. |
| **Example:** cat | | **Example:** I see five people. In my home, I see big green plants. | **Example:** Bee | **Example:** Grass |
May 4 – May 8, 2020

Topic: PLACES where we see living things

<table>
<thead>
<tr>
<th>Playground</th>
<th>Yard</th>
<th>Street</th>
<th>Beach</th>
<th>Tree</th>
<th>Bush</th>
</tr>
</thead>
<tbody>
<tr>
<td>at the playground</td>
<td>in the yard</td>
<td>next to the street</td>
<td>at the beach</td>
<td>in the tree</td>
<td>in the bush</td>
</tr>
</tbody>
</table>

Directions: Use notebook paper to complete these learning activities.

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday & Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point to each picture above and say the words 3 times. Think of 3-5 other PLACES where you see living things. Example: woods</td>
<td>Pick 3-5 living things. Write a sentence telling WHERE (the place) you see each living thing. Use the pictures to help. Examples: I see a squirrel at the playground. I see insects in the yard. I see birds in the tree.</td>
<td>Read a book or watch a TV show about living things. What living things did you read about or see on TV? Talk to a family member about living things in English or your home language. Example: I watched a TV show about the beach. Noisy birds live on the beach. They eat the small crabs that live in the sand. Look out your window or take a walk with a parent. Copy this chart on your notebook paper. Then complete the chart with 3-5 living things. Try to use describing words in your sentences (number, size, or color).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Living Thing</th>
<th>Place</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>yard</td>
<td>I saw a brown dog in my small yard.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Illustrations:
- Playground: [Link](https://clipartbarn.com)
- Yard: [Link](https://clipartbarn.com)
- Street: [Link](https://cliparting.com)
- Beach: [Link](https://wikiclipart.com)
- Tree: [Link](https://cliparting.com)
- Bush: [Link](https://clipart.email)
May 11 – May 15, 2020

Topic: Plant Parts

<table>
<thead>
<tr>
<th>Seed</th>
<th>Roots</th>
<th>Flower</th>
<th>Petal</th>
<th>Leaf/Leaves</th>
<th>Stem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brown</td>
<td>brown</td>
<td>white, pink, yellow, orange, or purple</td>
<td>green</td>
<td>green</td>
<td></td>
</tr>
</tbody>
</table>

Directions: Use notebook paper to complete these learning activities.

Monday & Tuesday
- Point to each picture above and say the words 3 times.
- Draw, color, & label a picture of a plant.
- Write 3 sentences telling about your plant.
- **Example:** My tall plant has eight leaves.

Wednesday & Thursday
- Draw a picture with different types of plants – trees, bushes, flowers, and grass.
- Label the parts of each plant using the words above.
- Talk to a family member about your picture. Tell about the plant parts and use describing words (number, size, or color).
- **Speaking Example:** This is my picture. I drew three trees, one bush, grass, and five yellow flowers. See this flower. Here are the roots, the stem, the leaves, and the petals. My favorite plant in this picture is the tall green tree. It looks like the tree outside of our window.

Friday
- Use the picture you drew on Wednesday & Thursday.
- Write 3-5 sentences telling about your picture.
- Write about the plant parts and use describing words (number, size, or color).

Writing Example